263
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in bioelectrochemical systems for bio-products recovery

, , , , &
Received 10 Jun 2022, Accepted 28 Jun 2023, Published online: 25 Jul 2023

References

  • Obileke K, Onyeaka H, Meyer EL, et al. Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem Commun. 2021 Apr 1;125:107003. doi:10.1016/j.elecom.2021.107003
  • Mathuriya AS, Sharma VN. Bioelectricity production from paper industry waste using a microbial fuel cell by clostridium species. J Biochem Technol. 2009 Feb 25;1(2):49–52.
  • Kumar M, Singh R. Sewage water treatment with energy recovery using constructed wetlands integrated with a bioelectrochemical system. Environ Sci Water Res Technol. 2020;6(3):795–808. doi:10.1039/C9EW00867E
  • Mathuriya AS, Yakhmi JV. Microbial fuel cells – applications for generation of electrical power and beyond. Crit Rev Microbiol. 2016 Jan 2;42(1):127–143. doi:10.3109/1040841X.2014.905513
  • Mathuriya AS, Yakhmi JV. Microbial fuel cells to recover heavy metals. Environ Chem Lett. 2014 Dec;12(4):483–494. doi:10.1007/s10311-014-0474-2
  • Rathour R, Kalola V, Johnson J, et al. Treatment of various types of wastewaters using microbial fuel cell systems. In: Venkata Mohan S, Varjani S, Pandey A, editors. Microbial electrochemical technology. Elsevier; 2019. p. 665–692. ISBN: 9780444640529. doi:10.1016/B978-0-444-64052-9.00027-3
  • Jung S, Lee J, Park YK, et al. Bioelectrochemical systems for a circular bioeconomy. Bioresour Technol. 2020 Mar 1;300:122748. doi:10.1016/j.biortech.2020.122748
  • Zheng T, Li J, Ji Y, et al. Progress and prospects of bioelectrochemical systems: electron transfer and its applications in the microbial metabolism. Front Bioeng Biotechnol. 2020 Jan 31;8:10. doi:10.3389/fbioe.2020.00010
  • Ceballos-Escalera A, Molognoni D, Bosch-Jimenez P, et al. Bioelectrochemical systems for energy storage: a scaled-up power-to-gas approach. Appl Energy. 2020 Feb 15;260:114138. doi:10.1016/j.apenergy.2019.114138
  • Saran C, Purchase D, Saratale GD, et al. Microbial fuel cell: a green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation. Chemosphere. 2022 Nov 3;312:137072. doi:10.1016/j.chemosphere.2022.137072
  • Mukherjee A, Patel V, Shah MT, et al. Effective power management system in stacked microbial fuel cells for onsite applications. J Power Sources. 2022 Jan 1;517:230684. doi:10.1016/j.jpowsour.2021.230684
  • Dwivedi KA, Huang SJ, Wang CT. Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: a review. Chemosphere. 2022 Jan 1;287:132248. doi:10.1016/j.chemosphere.2021.132248
  • Schröder U. Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J Solid State Electrochem. 2011 Jul;15(7):1481–1486. doi:10.1007/s10008-011-1395-7
  • Panwar P, Mahajan P. A critical review on sustainable way of power generation from microbial fuel cell technology. Mater Today Proc. 2022 Aug 26;71:150–154. doi:10.1016/j.matpr.2022.08.243
  • Zhuang L, Zheng Y, Zhou S, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour Technol. 2012 Feb 1;106:82–88. doi:10.1016/j.biortech.2011.11.019
  • Abourached C, Catal T, Liu H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014 Mar 15;51:228–233. doi:10.1016/j.watres.2013.10.062
  • Mathuriya AS. Novel microbial fuel cell design to operate with different wastewaters simultaneously. J Environ Sci. 2016;42:105–111. doi:10.1016/j.jes.2015.06.014
  • Mathuriya AS. Wastewater treatment and disinfection in multi criteria microbial fuel cell. Intellect Prop J India. 2016b;51:75378.
  • Mathuriya AS. Enhanced tannery wastewater treatment and electricity generation in microbial fuel cell by bacterial strains isolated from tannery waste. Environ Eng Manag J. 2014;13:2945–2954. doi:10.30638/eemj.2014.332
  • Guan CY, Hu A, Yu CP. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Sci Total Environ. 2019 Jun 20;670:585–594. doi:10.1016/j.scitotenv.2019.03.096
  • Mathuriya AS, Pant D. Assessment of expanded polystyrene as a separator in microbial fuel cell. Environ Technol. 2019 Jul 16;40(16):2052–2061. doi:10.1080/09593330.2018.1435740
  • Mathuriya AS, Hiloidhari M, Gware P, et al. Development and life cycle assessment of an auto circulating bio-electrochemical reactor for energy positive continuous wastewater treatment. Bioresour Technol. 2020 May 1;304:122959. doi:10.1016/j.biortech.2020.122959
  • Song TS, Jin Y, Bao J, et al. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. J Hazard Mater. 2016 Nov 5;317:73–80. doi:10.1016/j.jhazmat.2016.05.055
  • Wu Y, Zhao X, Jin M, et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour Technol. 2018 Apr 1;253:372–377. doi:10.1016/j.biortech.2018.01.046
  • Wang Z, Zhang B, Jiang Y, et al. Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells. Appl Energy. 2018;209:33–42. doi:10.1016/j.apenergy.2017.10.075
  • Ai C, Yan Z, Hou S, et al. Sequentially recover heavy metals from smelting wastewater using bioelectrochemical system coupled with thermoelectric generators. Ecotoxicol Environ Saf. 2020;205:111174. doi:10.1016/j.ecoenv.2020.111174
  • Pous N, Puig S, Coma M, et al. Bioremediation of nitrate-polluted groundwater in a microbial fuel cell. J Chem Technol Biotechnol. 2013;88:1690–1696. doi:10.1002/jctb.4020
  • Li B, Boiarkina I, Yu W, et al. Phosphorous recovery through struvite crystallization: challenges for future design. Sci Total Environ. 2019;648:1244–1256. doi:10.1016/j.scitotenv.2018.07.166
  • Zhu G, Chen G, Yu R, et al. Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution. Process Biochem. 2016;51:80–88. doi:10.1016/j.procbio.2015.11.004
  • Yang N, Zhan G, Luo H, et al. Integrated simultaneous nitrification/denitrification and comammox consortia as efficient biocatalysts enhance treatment of domestic wastewater in different up-flow bioelectrochemical reactors. Bioresour Technol. 2021:125604. doi:10.1016/j.biortech.2021.125604
  • Sevda S, Abu-Reesh IM, Yuan H, et al. Bioelectricity generation from treatment of petroleum refinery wastewater with simultaneous seawater desalination in microbial desalination cells. Energy Convers Manage. 2017;141:101–107. doi:10.1016/j.enconman.2016.05.050
  • Hernández-Majalca BC, Meléndez-Zaragoza MJ, Salinas-Gutiérrez JM, et al. Visible-light photo-assisted synthesis of GO-TiO2 composites for the photocatalytic hydrogen production. Int J Hydrogen Energy. 2019;44:12381–12389. doi:10.1016/j.ijhydene.2018.10.152
  • Yu D, Bai L, Zhai J, et al. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta. 2017;168:210–216. doi:10.1016/j.talanta.2017.03.048
  • Adekunle A, Raghavan V, Tartakovsky B. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Biosens Bioelectron. 2019;132:382–390. doi:10.1016/j.bios.2019.03.011
  • Xu L, Yu W, Graham N, et al. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. Chemosphere. 2021;264:128532. doi:10.1016/j.chemosphere.2020.128532
  • Theodosiou P, Faina A, Nejatimoharrami F, et al. EvoBot: towards a robot-chemostat for culturing and maintaining microbial fuel cells (MFCs). Conference on Biomimetic and Biohybrid Systems, Stanford, CA. 2017. p. 453–464.
  • Zhang P-Y, Liu Z-L. Experimental study of the microbial fuel cell internal resistance. J Power Sources. 2010;195:8013–8018. doi:10.1016/j.jpowsour.2010.06.062
  • Donovan C, Dewan A, Heo D, et al. Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J Power Sources. 2013;233:79–85. doi:10.1016/j.jpowsour.2012.12.112
  • Huang L, Yang X, Quan X, et al. A microbial fuel cell–electro-oxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol. 2010;85:621–627. doi:10.1002/jctb.2320
  • Cheng S, Jang J-H, Dempsey BA, et al. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res. 2011;45:303–307. doi:10.1016/j.watres.2010.07.054
  • Lobato J, del Campo AG, Fernández FJ, et al. Lagooning microbial fuel cells: a first approach by coupling electricity-producing microorganisms and algae. Appl Energy. 2013:220–226. doi:10.1016/j.apenergy.2013.04.010
  • Colombo A, Marzorati S, Lucchini G, et al. Assisting cultivation of photosynthetic microorganisms by microbial fuel cells to enhance nutrients recovery from wastewater. Bioresour Technol. 2017;237:240–248. doi:10.1016/j.biortech.2017.03.038
  • Behera M, Jana PS, More TT, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry. 2010;79:228–233. doi:10.1016/j.bioelechem.2010.06.002
  • Feng Y, He W, Liu J, et al. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol. 2014;156:132–138. doi:10.1016/j.biortech.2013.12.104
  • Pandey P, Shinde VN, Deopurkar RL, et al. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy. 2016;168:706–723. doi:10.1016/j.apenergy.2016.01.056
  • Karuppiah T, Uthirakrishnan U, Sivakumar SV, et al. Processing of electroplating industry wastewater through dual chambered microbial fuel cells (MFC) for simultaneous treatment of wastewater and green fuel production. Int J Hydrogen Energy. 2022;88:37569–37576. doi:10.1016/j.ijhydene.2021.06.034
  • Nguyen DA, Pham N, Pham HT. Wastewater treatment performance and microbial community of anode electrodes of membrane and membrane-less MFCs under effect of sunlight. J Water Process Eng. 2021;42:102159. doi:10.1016/j.jwpe.2021.102159
  • Chen P, Guo X, Li S, et al. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. Environ Int. 2021;156:106689. doi:10.1016/j.envint.2021.106689
  • Syed Z, Sogani M, Dongre A, et al. Bioelectrochemical systems for environmental remediation of estrogens: a review and way forward. Sci Total Environ. 2021;780:146544. doi:10.1016/j.scitotenv.2021.146544
  • Gajda I, Greenman J, Ieropoulos I. Microbial fuel cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl Energy. 2020;262:114475. doi:10.1016/j.apenergy.2019.114475
  • Jung SP, Pandit S. Important factors influencing microbial fuel cell performance. In: Venkata Mohan S, Varjani S, Pandey A, editors. Microbial electrochemical technology. Elsevier; 2019. p. 377–406. Elsevier; 2019. p. 337–406. ISBN: 9780444640529. doi:10.1016/B978-0-444-64052-9.00015-7
  • Leong JX, Daud WRW, Ghasemi M, et al. Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renewable Sustainable Energy Rev. 2013;28:575–587. doi:10.1016/j.rser.2013.08.052
  • Hiegemann H, Herzer D, Nettmann E, et al. An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol. 2016;218:115–122. doi:10.1016/j.biortech.2016.06.052
  • Jadhav DA, Ray SG, Ghangrekar MM. Third generation in bio-electrochemical system research – a systematic review on mechanisms for recovery of valuable by-products from wastewater. Renewable Sustainable Energy Rev. 2017;76:1022–1031. doi:10.1016/j.rser.2017.03.096
  • Deng Y, Zhu X, Chen N, et al. Review on electrochemical system for landfill leachate treatment: performance, mechanism, application, shortcoming, and improvement scheme. Sci Total Environ. 2020;745:140768. doi:10.1016/j.scitotenv.2020.140768
  • Cusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy. 2010;35(17):8855–8861. doi:10.1016/j.ijhydene.2010.06.077
  • Lu L, Ren N, Xing D, et al. Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron. 2009;24:3055–3060. doi:10.1016/j.bios.2009.03.024
  • Cai W, Han T, Guo Z, et al. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. Bioresour Technol. 2016;208:13–18. doi:10.1016/j.biortech.2016.02.028
  • Mthethwa NP, Nasr M, Bux F, et al. Utilization of Pistia stratiotes (aquatic weed) for fermentative biohydrogen: electron-equivalent balance, stoichiometry, and cost estimation. Int J Hydrogen Energy. 2018;43(17):8243–8255. doi:10.1016/j.ijhydene.2018.03.099
  • Rader GK, Logan BE. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy. 2010;35(17):8848–8854. doi:10.1016/j.ijhydene.2010.06.033
  • Kobayashi H, Saito N, Fu Q, et al. Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J Biosci Bioeng. 2013;116(1):114–117. doi:10.1016/j.jbiosc.2013.01.001
  • Sato K, Kawaguchi H, Kobayashi H. Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs. Energy Convers Manage. 2013;66:343–350. doi:10.1016/j.enconman.2012.12.008
  • Ma L, Liang B, Wang L-Y, et al. Microbial reduction of CO2 from injected NaH13CO3 with degradation of nhexadecane in the enrichment culture derived from a petroleum reservoir. Int Biodeterior Biodegrad. 2018;127:192–200. doi:10.1016/j.ibiod.2017.12.002
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol. 2003;21:1229–1232. doi:10.1038/nbt867
  • Cheng S, Xing D, Call DF, et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009;43(10):3953–3958. doi:10.1021/es803531g
  • Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol. 2010;101(9):3085–3090. doi:10.1016/j.biortech.2009.12.077
  • Eerten-Jansen MCAAV, Heijne AT, Buisman CJN, et al. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res. 2012;36:809–819. doi:10.1002/er.1954
  • Jiang Y, Su M, Zhang Y, et al. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrogen Energy. 2013;38(8):3497–3502. doi:10.1016/j.ijhydene.2012.12.107
  • Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM, et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain Chem Eng. 2013;1(5):513–518. doi:10.1021/sc300168z
  • Nevin KP, Woodard TL, Franks AE, et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio. 2010;1(2):0103-10. doi:10.1128/mbio.00103-10
  • Marshal CW, Marshall CW, Ross DE, et al. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol. 2013;47(11):6023–6029. doi:10.1021/es400341b
  • Bajracharya S, Yuliasni R, Vanbroekhoven K, et al. Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis. Bioelectrochemistry. 2017;113:26–34. doi:10.1016/j.bioelechem.2016.09.001
  • Gildemyn S, Verbeeck K, Jansen R, et al. The type of ion selective membrane determines stability and production levels of microbial electrosynthesis. Bioresour Technol. 2017;224:358–364. doi:10.1016/j.biortech.2016.11.088
  • Ganigué R, Puig S, Batlle-Vilanova P, et al. Microbial electrosynthesis of butyrate from carbon dioxide. ChemComm. 2015;51:3235–3238. https://doi.org/10.1039/C4CC10121A.
  • Torella JP, Gagliardi CJ, Chen JS, et al. Efficient solar-to-fuels production from a hybrid. Proc Natl Acad Sci USA. 2015;112(8):2337–2342. doi:10.1073/pnas.1424872112
  • Zhao H-Z, Zhang Y, Chang Y-Y, et al. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. J Power Sources. 2012;217:59–64. doi:10.1016/j.jpowsour.2012.06.014
  • Bajracharya S, ter Heijne A, Dominguez Benetton X, et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol. 2015;195:14–24. doi:10.1016/j.biortech.2015.05.081
  • Ma L, Zhou L, Ruan M-Y, et al. Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron. Renew Energy. 2019;132:861–870. doi:10.1016/j.renene.2018.08.059
  • Zeng X, Borole AP, Pavlostathis SG. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell. Environ Sci Technol. 2015;49(22):13667–13675. doi:10.1021/acs.est.5b02313
  • Lin CY, Lay CH, Sen B, et al. Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrogen Energy. 2012;37(20):15632–15642. doi:10.1016/j.ijhydene.2012.02.072
  • Ramos C, Buitrón G, Moreno-Andrade I, et al. Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. Int J Hydrogen Energy. 2012;37(18):13288–13295. doi:10.1016/j.ijhydene.2012.06.051
  • Parkhey P, Gupta P. Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review. Renewable Sustainable Energy Rev. 2017;69:1085–1099. doi:10.1016/j.rser.2016.09.101
  • Hou Y, Zhang R, Yu Z, et al. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell. Bioresour Technol. 2017;224:63–68. doi:10.1016/j.biortech.2016.10.069
  • Singh NK, Singh R. A sequential approach to uncapping of theoretical hydrogen production in a sulfate-reducing bacteria-based bio-electrochemical system. Int J Hydrogen Energy. 2021;46(39):20397–20412. doi:10.1016/j.ijhydene.2021.03.152
  • Hou Y, Zhang R, Yu Z, et al. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell. Bioresour Technol. 2017;224:63–68. doi:10.1016/j.biortech.2016.10.069
  • Marone A, Ayala-Campos OR, Trably E, et al. Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int J Hydrogen Energy. 2017;42(3):1609–1621. doi:10.1016/j.ijhydene.2016.09.166
  • Singh NK, Kumari P, Priyanka P. Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system. Energy. 2021;219:119583. doi:10.1016/j.energy.2020.119583
  • Flayac C, Trably E, Bernet N. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: significance of microbial structures. Bioelectrochemistry. 2018;123:219–226. doi:10.1016/j.bioelechem.2018.05.009
  • Sambusiti C, Bellucci M, Zabaniotou A, et al. Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renewable Sustainable Energy Rev. 2015;44:20–36. doi:10.1016/j.rser.2014.12.013
  • Marone A, Ayala-Campos OR, Trably E, et al. Coupling dark fermentation and microbial electrolysis to enhance bio-hydrogen production from agro-industrial wastewaters and by-products in a bio-refinery framework. Int J Hydrogen Energy. 2017;42(3):1609–1621. doi:10.1016/j.ijhydene.2016.09.166
  • Ren H-Y, Liu B-F, Ding J, et al. Continuous photo-hydrogen production in anaerobic fluidized bed photo-reactor with activated carbon fiber as carrier. RSC Adv. 2012;2:5531–5535. doi:10.1039/c2ra20420g
  • Baeza JA, Martínez-Miró À, Guerrero J, et al. Bioelectrochemical hydrogen production from urban wastewater on a pilot scale. J Power Sources. 2017;356:500–509. doi:10.1016/j.jpowsour.2017.02.087
  • Dai H, Yang H, Liu X, et al. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel. 2016;174:251–256. doi:10.1016/j.fuel.2016.02.013
  • Popov AL, Michie IS, Kim JR, et al. Enrichment strategy for enhanced bioelectrochemical hydrogen production and the prevention of methanogenesis. Int J Hydrogen Energy. 2016;41(7):4120–4131. doi:10.1016/j.ijhydene.2016.01.014
  • Li X, Zhang R, Qian Y, et al. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent. Bioresour Technol. 2017;236:37–43. doi:10.1016/j.biortech.2017.03.160
  • Singh NK, Singh R. Modeling and statistical analysis of heat-shocked sulfate-reducers and methanogens rich consortiums for hydrogen and methane production in a bio-electrochemical cell. Int J Hydrogen Energy. 2021;46:25819–25831. doi:10.1016/j.ijhydene.2021.05.097
  • Rago L, Baeza JA, Guisasola A. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions. Bioelectrochemistry. 2016;109:57–62. doi:10.1016/j.bioelechem.2016.01.003
  • Singh NK, Singh R. Evaluation of pretreatment potential and hydrogen recovery from lignocellulosic biomass in an anoxic double-staged bioelectrochemical system. Int J Hydrogen Energy. 2021;46:39122–39135. doi:10.1016/j.ijhydene.2021.09.155
  • Chacón-Carrera RA, López-Ortiz A, Collins-Martínez V, et al. Assessment of two ionic exchange membranes in a bioelectrochemical system for wastewater treatment and hydrogen production. Int J Hydrogen Energy. 2019;44(24):12339–12345. doi:10.1016/j.ijhydene.2018.10.153
  • Jung S, Lee J, Park YK, et al. Bioelectrochemical systems for a circular bioeconomy. Bioresour Technol. 2020;300:122748. doi:10.1016/j.biortech.2020.122748
  • Pant D, Singh A, Van Bogaert G, et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012;2:1248–1263. doi:10.1039/C1RA00839K
  • Vu MT, Noori MT, Min B. Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems. Bioresour Technol. 2020;296:122265. doi:10.1016/j.biortech.2019.122265
  • van Eerten-Jansen MCAA, Jansen NC, Plugge CM, et al. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J Chem Technol Bioetchnol. 2015;90(5):963–970. doi:10.1002/jctb.4413
  • Dykstra CM, Pavlostathi SG. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES). Biotechnol Bioeng. 2017;114(5):961–969. doi:10.1002/bit.26230
  • Sugnaux M, Happe M, Cachelin CP, et al. Cathode deposits favor methane generation in microbial electrolysis cell. Chem Eng J. 2017;324:228–236. doi:10.1016/j.cej.2017.05.028
  • Marshall CW, Ross DE, Fichot EB, et al. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol. 2012;78(23):8412–8420. doi:10.1128/AEM.02401-12
  • Rader GK, Logan BE. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. Int J Hydrogen Energy. 2010;35(17):8848–8854. doi:10.1016/j.ijhydene.2010.06.033
  • Ding A, Yang Y, Sun G, et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J. 2016;283:260–265. doi:10.1016/j.cej.2015.07.054
  • Prajapati KB, Singh R. Enhancement of biogas production in bio-electrochemical digester from agricultural waste mixed with wastewater. Renew Energy. 2020;146:460–468. doi:10.1016/j.renene.2019.06.154
  • Park J, Lee B, Tian D, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresour Technol. 2018;247:226–233. doi:10.1016/j.biortech.2017.09.021
  • Hou J, Liu Z, Li Y, et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs. Bioprocess Biosyst Eng. 2015;38:881–888. doi:10.1007/s00449-014-1332-0
  • Sasaki D, Sasaki K, Watanabe A, et al. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresour Technol. 2013;129:366–373. doi:10.1016/j.biortech.2012.11.048
  • Kong F, Ren H-Y, Pavlostathis SG, et al. Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems. Renewable Sustainable Energy Rev. 2020;125:109816. doi:10.1016/j.rser.2020.109816
  • Ding A, Yang Y, Sun G, et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J. 2016;283:260–265. doi:10.1016/j.cej.2015.07.054
  • Prajapati KB, Singh R. Enhancement of biogas production in bio-electrochemical digester from agricultural waste mixed with wastewater. Renew Energy. 2020;146:460–468. doi:10.1016/j.renene.2019.06.154
  • Sasaki D, Sasaki K, Watanabe A, et al. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresour Technol. 2013;129:366–373. doi:10.1016/j.biortech.2012.11.048
  • Hou J, Liu Z, Li Y, et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs. Bioprocess Biosyst Eng. 2015;38:881–888. doi:10.1007/s00449-014-1332-0
  • Park J, Lee B, Tian D, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresour Technol. 2018;247:226–233. doi:10.1016/j.biortech.2017.09.021
  • Sasaki K, Morita M, Matsumoto N, et al. Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system. J Biosci Bioeng. 2012;114(1):64–69. doi:10.1016/j.jbiosc.2012.02.028
  • Batlle-Vilanova P, Ganigué R, Ramió-Pujol S, et al. Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction. Bioelectrochemistry. 2017;117:57–64. doi:10.1016/j.bioelechem.2017.06.004
  • Zhang L, Ong J, Liu J, et al. Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system. Renew Energy. 2017;108:581–588. doi:10.1016/j.renene.2017.03.009
  • Zhao Z, zhang Y, Li Y, et al. Electrochemical reduction of carbon dioxide to formate with Fe-C electrodes in anaerobic sludge digestion process. Water Res. 2016;106:339–343. doi:10.1016/j.watres.2016.10.018
  • Srikanth S, Maesen M, Dominguez-Benetton X, et al. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour Technol. 2014;165:350–354. doi:10.1016/j.biortech.2014.01.129
  • Zhen G, Kobayashi T, Lu X, et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode. Bioresour Technol. 2015;186:141–148. doi:10.1016/j.biortech.2015.03.064
  • Verbeeck K, Gildemyn S, Rabaey K. Membrane electrolysis assisted gas fermentation for enhanced acetic acid production. Front Energy Res. 2018;6:88. doi:10.3389/fenrg.2018.00088
  • Yu L, Yuan Y, Tang J, et al. Thermophilic moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry. 2017;117:23–28. doi:10.1016/j.bioelechem.2017.05.001
  • Choi O, Um Y, Sang B-I. Butyrate production enhancement by clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng. 2012;109(10):2494–2502. doi:10.1002/bit.24520
  • Volodina E, Raberg M, Steinbüchel A. Engineering the heterotrophic carbon sources utilization range of ralstonia eutropha H16 for applications in biotechnology. Crit Rev Biotechnol. 2016;36(6):978–991. doi:10.3109/07388551.2015.1079698
  • Kelly PT, He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol. 2014;153:351–360. doi:10.1016/j.biortech.2013.12.046
  • Chen X, Zhou H, Zuo K, et al. Self-sustaining advanced wastewater purification and simultaneous in situ nutrient recovery in a novel bioelectrochemical system. Chem Eng J. 2017;330:692–697. doi:10.1016/j.cej.2017.07.130
  • Nancharaiah YV, Mohan SV, Lens PNL. Removal and recovery of metals and nutrients from wastewater using bioelectrochemical systems. In: Venkata Mohan S, Varjani S, Pandey A, editors. Microbial electrochemical technology. Elsevier; 2019. p. 693–720. ISBN: 9780444640529. doi:10.1016/B978-0-444-64052-9.00028-5
  • Etter B, Tilley E, Khadka R, et al. Low-cost struvite production using source-separated urine in Nepal. Water Res. 2011;45(2):852–862. doi:10.1016/j.watres.2010.10.007
  • Virdis B, Rabaey K, Rozendal RA, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res. 2010;44(9):2970–2980. doi:10.1016/j.watres.2010.02.022
  • Virdis B, Rabaey K, Rozendal RA, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res. 2010;44(9):2970–2980. doi:10.1016/j.watres.2010.02.022
  • Kuntke P, Śmiech KM, Bruning H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 2012;46(8):2627–2636. doi:10.1016/j.watres.2012.02.025
  • Cusick RD, Logan BE. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol. 2012;107:110–115. doi:10.1016/j.biortech.2011.12.038
  • Fischer F, Bastian C, Happe M, et al. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour Technol. 2011;102(10):5824–5830. doi:10.1016/j.biortech.2011.02.089
  • You S-J, Ren N-Q, Zhao Q-L, et al. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification. Biosens Bioelectron. 2009;24(12):3698–3701. doi:10.1016/j.bios.2009.05.015
  • Nam J-Y, Kim H-W, Shin H-S. Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J Power Sources. 2010;195(19):6428–6433. doi:10.1016/j.jpowsour.2010.03.091
  • Kuntke P, Śmiech KM, Bruning H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 2012;46(8):2627–2636. doi:10.1016/j.watres.2012.02.025
  • Li B, Boiarkina I, Yu W, et al. Phosphorous recovery through struvite crystallization: challenges for future design. Sci Total Environ. 2019;648:1244–1256. doi:10.1016/j.scitotenv.2018.07.166
  • Liao M, Liu Y, Tian E, et al. Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell. Chem Eng J. 2020;391:123517. doi:10.1016/j.cej.2019.123517
  • Fischer F, et al. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour Technol. 2011;102(10):5824–5830. doi:10.1016/j.biortech.2011.02.089
  • Ichihashi O, Hirooka K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol. 2012;114:303–307. doi:10.1016/j.biortech.2012.02.124
  • Cusick RD, Logan BE. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol. 2012;107:110–115. doi:10.1016/j.biortech.2011.12.038
  • Fischer F, Bastian C, Happe M, et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour Technol. 2018;253:372–377. doi:10.1016/j.biortech.2018.01.046
  • Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–232. doi:10.1016/j.watres.2014.08.013
  • Mathuriya AS, Yakhmi JV. Microbial fuel cells to recover heavy metals. Environ Chem Lett. 2014;12:483–494. doi:10.1007/s10311-014-0474-2
  • Singh A, Kaushik A. Removal of Cd and Ni with enhanced energy generation using biocathode microbial fuel cell: insights from molecular characterization of biofilm communities. J Cleaner Prod. 2021 Jun 19;315:127940. doi:10.1016/j.jclepro.2021.127940
  • Nancharaiah YV, Mohan SV, Lens PNL. Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol. 2015;195:102–114. doi:10.1016/j.biortech.2015.06.058
  • Huang L, Xue H, Zhou Q, et al. Imaging and distribution of Cd(II) ions in electrotrophs and its response to current and electron transfer inhibitor in microbial electrolysis cells. Sens Actuators B. 2018;255:244–254. doi:10.1016/j.snb.2017.08.049
  • Rikame SS, Mungray AA, Mungray AK. Modification of anode electrode in microbial fuel cell for electrochemical recovery of energy and copper metal. Electrochim Acta. 2018;275:8–17. doi:10.1016/j.electacta.2018.04.141
  • Cusick RD, Ullery ML, Dempsey BA, et al. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Res. 2014;54:297–306. doi:10.1016/j.watres.2014.01.051
  • Singh Mathuriya A, Hiloidhari M, Gware P, et al. Development and life cycle assessment of an auto circulating bio-electrochemical reactor for energy positive continuous wastewater treatment. Bioresour Technol. 2020;304:122959. doi:10.1016/j.biortech.2020.122959
  • Li Z, Zhang X, Zeng Y, et al. Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresour Technol. 2009;100:2551–2555. doi:10.1016/j.biortech.2008.12.018
  • Thung W-E, Ong SA, Ho LN, et al. Simultaneous wastewater treatment and power generation with innovative design of an upflow membrane-less microbial fuel cell. Water Air Soil Pollut. 2015;226:165. doi:10.1007/s11270-015-2410-x
  • Dong Y, Qu Y, He W, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour Technol. 2015;195:66–72. doi:10.1016/j.biortech.2015.06.026
  • Sun M, Zhai L-F, Li W-W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev. 2016;45:2847–2870. doi:10.1039/C5CS00903K
  • Ghadge AN, Ghangrekar MM. Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes. Bioresour Technol. 2015;182:373–377. doi:10.1016/j.biortech.2015.01.115
  • Ghadge AN, Jadhav DA, Ghangrekar MM. Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications. Environ Prog Sustain Energy. 2016;35(6):1809–1817. doi:10.1002/ep.12403
  • Ge Z, He Z. Long-term performance of a 200 L modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environ Sci Water Res Technol. 2016;2:274–281. doi:10.1039/C6EW00020G
  • Jadhav DA, Ghangrekar MM, Duteanu N. Microbial fuel cell: an overview and recent progress towards scaling up. In: D Das, editor. Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Cham: Springer Publications; 2018. p. 443–444.
  • Liang P, Duan R, Jiang Y, et al. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018;141:1–8. doi:10.1016/j.watres.2018.04.066
  • Rossi R, Evans PJ, Logan BE. Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell. J Power Sources. 2019;412:294–300. doi:10.1016/j.jpowsour.2018.11.054
  • Zhuang L, Zheng Y, Zhou S, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour Technol. 2012;106:82–88. doi:10.1016/j.biortech.2011.11.019
  • Dong Y, Qu Y, He W, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour Technol. 2015;195:66–72. doi:10.1016/j.biortech.2015.06.026
  • Wu Y, Zhao X, Jin M, et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour Technol. 2018;253:372–377. doi:10.1016/j.biortech.2018.01.046
  • Liu Y, Liu H, Wang C, et al. Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene. Environ Sci Technol. 2013;47(23):13889–13895. doi:10.1021/es4032216
  • Vilajeliu-Pons A, Puig S, Salcedo-Dávila I, et al. Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials. Environ Sci Water Res Technol. 2017;3(5):947–959. doi:10.1039/C7EW00079K
  • Valladares Linares R, Domínguez-Maldonado J, Rodríguez-Leal E, et al. Scale up of microbial fuel cell stack system for residential wastewater treatment in continuous mode operation. Water. 2019;11(2):217. doi:10.3390/w11020217
  • Janicek A, Fan Y, Liu H. Design of microbial fuel cells for practical application: a review and analysis of scale-up studies. Biofuels. 2014;5(1):79–92. doi:10.4155/bfs.13.69
  • Ge Z, Zhang F, Grimaud J, et al. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresour Technol. 2013;136:509–514. doi:10.1016/j.biortech.2013.03.016
  • Wang H, Wang G, Ling Y, et al. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale. 2013;5:10283–10290. doi:10.1039/c3nr03487a
  • Zhang F, Ge Z, Grimaud J, et al. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol. 2013;136:316–321. doi:10.1016/j.biortech.2013.02.107
  • Fan Y, Han S-K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci. 2012;5:8273–8280. doi:10.1039/c2ee21964f
  • Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol. 2010;101(2):469–475. doi:10.1016/j.biortech.2009.07.039
  • Logan BE, Wallack MJ, Kim K-Y, et al. Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett. 2015;2(8):206–214. doi:10.1021/acs.estlett.5b00180
  • Gude VG. A new perspective on microbiome and resource management in wastewater systems. J Biotechnol Biomater. 2015;5(2):1. doi:10.4172/2155-952X.1000184
  • Deng L, Li F, Zhou S, et al. A study of electron-shuttle mechanism in klebsiella pneumoniae based-microbial fuel cells. Chin Sci Bull. 2010;55:99–104. doi:10.1007/s11434-009-0563-y
  • Sharma Y, Li B. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour Technol. 2010;101(6):1844–1850. doi:10.1016/j.biortech.2009.10.040
  • Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2010;39(9):1675–1686. doi:10.1016/j.watres.2005.02.002
  • Islam MA, Woon CW, Ethiraj B, et al. Ultrasound driven biofilm removal for stable power generation in microbial fuel cell. Energy Fuels. 2017;31(1):968–976. doi:10.1021/acs.energyfuels.6b02294
  • Winfield J, Ieropoulos I, Rossiter J, et al. Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation. 2013;24:733–739. doi:10.1007/s10532-013-9621-x
  • Al-Mayyahi RB, Park SG, Jadhav DA, et al. Unraveling the influence of magnetic field on microbial and electrogenic activities in bioelectrochemical systems: a comprehensive review. Fuel. 2023;331:125889. doi:10.1016/j.fuel.2022.125889
  • Foletti A, Grimaldi S, Lisi A, et al. Bioelectromagnetic medicine: the role of resonance signaling. Electromagn Biol Med. 2013;32(4):484–499. doi:10.3109/15368378.2012.743908
  • Speers AM, Reguera G. Competitive advantage of oxygen-tolerant bioanodes of geobacter sulfurreducens in bioelectrochemical systems. Biofilm. 2021;3:100052. doi:10.1016/j.bioflm.2021.100052
  • Hu B, Leng J, Quan J, et al. Impact of static magnetic field on electron transport and microbial community shifts in the nitritation sequencing batch reactor. J Environ Chem Eng. 2022;10:108774. doi:10.1016/j.jece.2022.108774
  • Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci. 2008;1:417–429. doi:10.1039/b806498a
  • Ahn Y, Hatzell MC, Zhang F, et al. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. J Power Sources. 2014;249:440–445. doi:10.1016/j.jpowsour.2013.10.081
  • Lefebvre O, Tan Z, Kharkwal S, et al. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour Technol. 2012;112:336–340. doi:10.1016/j.biortech.2012.02.048
  • Pant D, Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101(6):1533–1543. doi:10.1016/j.biortech.2009.10.017
  • Yang W, Kim K-Y, Saikaly PE, et al. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy Environ Sci. 2017;10:1025–1033. doi:10.1039/C7EE00910K
  • Zhao YN, Li XF, Ren YP, et al. Effect of static magnetic field on the performances of and anode biofilms in microbial fuel cells. RSC Adv. 2016;6:82301–82308. doi:10.1039/C6RA15844G
  • Song X, Huang L, Lu H, et al. An external magnetic field for efficient acetate production from inorganic carbon in serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochem Eng J. 2020;155:107467. doi:10.1016/j.bej.2019.107467
  • Yang HY, Wang YX, He CS, et al. Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide. Appl Energy. 2020;274:115292. doi:10.1016/j.apenergy.2020.115292
  • Luo H, Qi J, Zhou M, et al. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens. Bioresour Technol. 2020;309:123322. doi:10.1016/j.biortech.2020.123322
  • Flores-Rodriguez C, Reddy CN, Min B. Enhanced methane production from acetate intermediate by bioelectrochemical anaerobic digestion at optimal applied voltages. Biomass Bioenergy. 2019;127:105261. doi:10.1016/j.biombioe.2019.105261
  • Li X, Zheng R, Zhang X, et al. A novel exoelectrogen from microbial fuel cell: bioremediation of marine petroleum hydrocarbon pollutants. J Environ Manag. 2019;235:70–76.
  • Chen H, Simoska O, Lim K, et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem Rev. 2020 Oct 14;120(23):12903–12993. doi:10.1021/acs.chemrev.0c00472
  • Niu C, Geng J, Ren H, et al. The strengthening effect of a static magnetic field on activated sludge activity at low temperature. Bioresour Technol. 2013;150:156–162. doi:10.1016/j.biortech.2013.08.139
  • Yin Y, Huang G, Tong Y, et al. Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field. J Power Sources. 2013;237:58–63. doi:10.1016/j.jpowsour.2013.02.080
  • Chu FJ, Sie CY, Wan TJ, et al. Effects of magnetic fields on electricity generation in a photosynthetic ceramic microbial fuel cell. Int J Hydrogen Energy. 2021;46(20):11411–11418. doi:10.1016/j.ijhydene.2020.08.167
  • Zhao YN, Li XF, Ren YP, et al. Effect of static magnetic field on the performances of and anode biofilms in microbial fuel cells. RSC Adv. 2016;6:82301–82308. doi:10.1039/C6RA15844G
  • He Z, Angenent L. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis. 2006;18:2009–2015. doi:10.1002/elan.200603628
  • Sun D, Cheng S, Wang A, et al. Temporal-spatial changes in viabilities and electrochemical properties of anode biofilms. Environ Sci Technol. 2015;49(8):5227–5235. doi:10.1021/acs.est.5b00175
  • Zhang E, Xu W, Diao G, et al. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources. 2006;161(2):820–825. doi:10.1016/j.jpowsour.2006.05.004
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7:375–381. doi:10.1038/nrmicro2113
  • Capodaglio AG, Molognoni D, Dallago E, et al. Microbial fuel cells for direct electrical energy recovery from urban wastewaters. Scientific World J. 2013;2013:634738. doi:10.1155/2013/634738
  • Logan B, Cheng S, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol. 2007;41(9):3341–3346. doi:10.1021/es062644y
  • Hou J, Liu Z, Zhang P. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources. 2013;224:139–144. doi:10.1016/j.jpowsour.2012.09.091
  • Xie X, Yu G, Liu N, et al. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ Sci. 2012;5:6862–6866. doi:10.1039/c2ee03583a
  • Fujii T, Murakami K, Endo T, et al. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess Biosyst Eng. 2014;37:749–1758. doi:10.1007/s00449-013-1032-1
  • Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol. 2004;38(14):4040–4046. doi:10.1021/es0499344
  • Hou Y, Zhang R, Luo H, et al. Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem. 2015;50(7):1103–1109. doi:10.1016/j.procbio.2015.04.001
  • Wen Q, Wang S, Yan J, et al. MnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cellsMnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. J Power Sources. 2012;216:187–191. doi:10.1016/j.jpowsour.2012.05.023
  • Tsai H-Y, Wu C-C, Lee C-Y, et al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources. 2009;194(1):199–205. doi:10.1016/j.jpowsour.2009.05.018
  • Chen C-Y, Chen T-Y, Chung Y-C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes. Environ Technol. 2014;35(3):286–293. doi:10.1080/09593330.2013.826254
  • Blanchet E, Erable B, Solan M-LD, et al. Two-dimensional carbon cloth and three-dimensional carbon felt perform similarly to form bioanode fed with food waste. Electrochem Commun. 2016;66:38–41. doi:10.1016/j.elecom.2016.02.017
  • Xiao L, Damien J, Luo J, et al. Crumpled graphene particles for microbial fuel cell electrodes. J Power Sources. 2012;208:187–192. doi:10.1016/j.jpowsour.2012.02.036
  • Zhang T, Zeng Y, Chen S, et al. Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochem Commun. 2007;9(3):349–353. doi:10.1016/j.elecom.2006.09.025
  • Zhang Y, Mo G, Li X, et al. A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources. 2011;196(13):5402–5407. doi:10.1016/j.jpowsour.2011.02.067
  • Park D, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng. 2002;81:3. doi:10.1002/bit.10501
  • Zou Y, Xiang C, Yang L, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy. 2008;33(18):4856–4862. doi:10.1016/j.ijhydene.2008.06.061
  • Yuan Y, Zhou S, Zhao B, et al. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour Technol. 2012;116:453–458. doi:10.1016/j.biortech.2012.03.118
  • Peng L, You S-J, Wang J-Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens Bioelectron. 2010;25(5):1248–1251. doi:10.1016/j.bios.2009.10.002
  • Wang Z, Ma J, Xu Y, et al. Power production from different types of sewage sludge using microbial fuel cells: a comparative study with energetic and microbiological perspectives. J Power Sources. 2013;235:280–288. doi:10.1016/j.jpowsour.2013.02.033
  • Zhao C, Wang Y, Shi F, et al. High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphenenanosheets as an anode. Chem Commun. 2013;49:6668–6670. doi:10.1039/c3cc42068j
  • Lv Z, Chen Y, Wei H, et al. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim Acta. 2013;111:366–373. doi:10.1016/j.electacta.2013.08.022
  • Prajapati KB, Singh R. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste. Bioresour Technol. 2018;263:491–498. doi:10.1016/j.biortech.2018.05.036
  • Prajapati KB, Singh R. Sewage sludge and food waste co-digestion to methane: a multi response and kinetic modeling study to evaluate the dynamics in compositional parameters. Bioresource Technology Reports. 2018;2:121–130. doi:10.1016/j.biteb.2018.05.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.