63
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stability of aerobic granular sludge for treating inorganic wastewater with different nitrogen loading rates

, , , , , & show all
Pages 3898-3911 | Received 27 Jan 2023, Accepted 02 Jul 2023, Published online: 24 Jul 2023

References

  • Ran XC, Zhou MD, Wang T, et al. Multidisciplinary characterization of nitrogen-removal granular sludge: a review of advances and technologies. Water Res. 2022;214:118214, doi:10.1016/j.watres.2022.118214
  • Wan CL, Fu LY, Li ZW, et al. Formation, application, and storage-reactivation of aerobic granular sludge: a review. J Environ Manage. 2022;323:116302, doi:10.1016/j.jenvman.2022.116302
  • Cai F, Lei L, Li Y, et al. A review of aerobic granular sludge (AGS) treating recalcitrant wastewater: refractory organics removal mechanism, application and prospect. Sci Total Environ. 2021;782:146852, doi:10.1016/j.scitotenv.2021.146852
  • Bengtsson S, de Blois M, Wilén BM, et al. Treatment of municipal wastewater with aerobic granular sludge. Crit Rev Environ Sci Technol. 2018;48(2):119–166. doi:10.1080/10643389.2018.1439653
  • Chen FY, Liu YQ, Tay JH, et al. Rapid formation of nitrifying granules treating high-strength ammonium wastewater in a sequencing batch reactor. Appl Microbiol Biotechnol. 2015;99:4445–4452. doi:10.1007/s00253-014-6363-6
  • Jin RC, Zheng P, Mahmood Q, et al. Performance of a nitrifying airlift reactor using granular sludge. Sep Purif Technol. 2008;63(3):670–675. doi:10.1016/j.seppur.2008.07.012
  • Tay JH, Pan S, Tay STL, et al. The effect of organic loading rate on the aerobic granulation: the development of shear force theory. Water Sci Technol. 2003;47:235–240.
  • Iorhemen OT, Liu Y. Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge. J Water Process Eng. 2021;39:101709. doi:10.1016/j.jwpe.2020.101709
  • Shi XY, Sheng GP, Li XY, et al. Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresour Technol. 2010;101(9):2960–2964. doi:10.1016/j.biortech.2009.11.099
  • Zhang LN, Long B, Cheng YY, et al. Rapid cultivation and stability of autotrophic nitrifying granular sludge. Water Sci Technol. 2020;81:309–320. doi:10.2166/wst.2020.111
  • Zeng MJ, Zeng Y, Zhang BC, et al. Coupling of endogenous/exogenous nitrification and denitrification in an aerobic granular sequencing batch reactor. Environ Technol. doi:10.1080/09593330.2022.2068380
  • Liu Y, Wang ZW, Tay JH. A unified theory for upscaling aerobic granular sludge sequencing batch reactors. Biotechnol Adv. 2005;23(5):335–344. doi:10.1016/j.biotechadv.2005.04.001
  • Zhu L, Yu Y, Dai X, et al. Optimization of selective sludge discharge mode for enhancing the stability of aerobic granular sludge process. Chem Eng J. 2013;217:442–446. doi:10.1016/j.cej.2012.11.132
  • Li AJ, Li XY. Selective sludge discharge as the determining factor in SBR aerobic granulation: numerical modelling and experimental verification. Water Res 2009;43(14):3387–3396. doi:10.1016/j.watres.2009.05.004
  • de Sousa Rollemberg SL, de Barros AN, Firmino PIM, et al. Evaluation of sludge discharge methodologies in aerobic granular sludge reactors. Bioresour Technol Rep. 2022;18:101018. doi:10.1016/j.biteb.2022.101018
  • Liu Q, Wu C, Bin L, et al. Distribution characteristics of phosphorus-containing substances in a long running aerobic granular sludge-membrane bioreactor with no sludge discharge. Bioresour. Technol. 2022;347:126694. doi:10.1016/j.biortech.2022.126694
  • Long B, Xuan X, Yang C, et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control. Chemosphere. 2019;225:460–469. doi:10.1016/j.chemosphere.2019.03.048
  • Zhang B, Long B, Cheng Y, et al. Rapid domestication of autotrophic nitrifying granular sludge and its stability during long-term operation. Environ Technol. 2021;42:2587–2598. doi:10.1080/09593330.2019.1707881
  • Zhang BC, Long B, Cheng YY, et al. Preservation of autotrophic nitrifying granular sludge and its rapid recovery. J Environ Chem Eng. 2020;8(5):104046. doi:10.1016/j.jece.2020.104046
  • Zhou Y, Oehmen A, Lim M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res. 2011;45(15):4672–4682. doi:10.1016/j.watres.2011.06.025
  • APHA. Standard methods for the examination of water and. Wastewater(22nd ed.) Washington (DC): American Public Health Association, American Water Works Association and Water Environment Federation; 2012.
  • Ochoa JC, Colprim J, Palacios B, et al. Active heterotrophic and autotrophic biomass distribution between fixed and suspended systems in a hybrid biological reactor. Water Sci Technol. 2002;46(1-2):397–404. doi:10.2166/wst.2002.0507
  • Wang XT, Yang H, Su Y, et al. Effects of sludge morphology on the anammox process: analysis from the perspectives of performance, structure, and microbial community. Chemosphere. 2022;288:132390, doi:10.1016/j.chemosphere.2021.132390
  • Lowry OH, Rosebrough NJ, Farn AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi:10.1016/S0021-9258(19)52451-6
  • Gerhardt P, Murray RGE, Wood WA, et al. Methods for general and molecular bacteriology. Washington (DC): American Society for Microbiology; 1994.
  • Tay JH, Liu QS, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl Microbiol Biotechnol. 2001;57:227–233. doi:10.1007/s002530100766
  • Chen C, Bin L, Tang B, et al. Cultivating granular sludge directly in a continuous-flow membrane bioreactor with internal circulation. Chem Eng J. 2017;309:108–117. doi:10.1016/j.cej.2016.10.034
  • Soliman M, Eldyasti A. Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB) controlled by mixing regime. Bioresour Technol 2016;221:85–95. doi:10.1016/j.biortech.2016.09.023
  • He Q, Zhang J, Gao S, et al. A comprehensive comparison between non-bulking and bulking aerobic granular sludge in microbial communities. Bioresour Technol. 2019;294:122151. doi:10.1016/j.biortech.2019.122151
  • Guo Y, Shi W, Zhang B, et al. Effect of voltage intensity on the nutrient removal performance and microbial community in the iron electrolysis-integrated aerobic granular sludge system. Environ Pollut. 2021;274:116604. doi:10.1016/j.envpol.2021.116604
  • Urakami T, Sasaki J, Suzuki KI, et al. Characterization and description of Hyphomicrobium denitrificans sp. nov. Int J Syst Evol Microbiol. 1995;45:528–532.
  • He Q, Chen L, Zhang S, et al. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Bioresour Technol. 2019;271:48–58. doi:10.1016/j.biortech.2018.09.102
  • Xia J, Ye L, Ren H, et al. Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biotechnol. 2018;102:3967–3979. doi:10.1007/s00253-018-8905-9
  • Wang C, Yu G, Yang F, et al. Formation of anaerobic granules and microbial community structure analysis in anaerobic hydrolysis denitrification reactor. Sci Total Environ. 2020;737:139734. doi:10.1016/j.scitotenv.2020.139734
  • Hou S, Ai C, Zhou W, et al. Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils. Soil Biol Biochem. 2018;119:32–40. doi:10.1016/j.soilbio.2018.01.007
  • He Q, Zhang W, Zhang S, et al. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor. Bioresour. Technol. 2017;238:116–121. doi:10.1016/j.biortech.2017.03.181
  • Yao S, Ni J, Ma T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. HA2. Bioresour Technol. 2013;139:80–86. doi:10.1016/j.biortech.2013.03.189
  • Chen J, Long S, Liu X, et al. Long-term evaluation of the effect of peracetic acid on a mixed anoxic culture: organic matter degradation, denitrification, and microbial community structure. Chem Eng J. 2021;411:128447. doi:10.1016/j.cej.2021.128447
  • Swiątczak P, Cydzik-Kwiatkowska A. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Environ Sci Pollut Res. 2018;25:1655–1669. doi:10.1007/s11356-017-0615-9
  • Gou M, Wang HZ, Li J, et al. Different inhibitory mechanisms of chlortetracycline and enrofloxacin on mesophilic anaerobic degradation of propionate. Environ Sci Pollut Res. 2020;27:1406–1416. doi:10.1007/s11356-019-06705-7
  • Song X, Sun S, Zhou L, et al. Inoculation of aerobic granular sludge to achieve granulation under high dissolved oxygen and the associated mechanisms. J Water Process Eng. 2021;42:102168. doi:10.1016/j.jwpe.2021.102168
  • Pester M, Maixner F, Berry D, et al. NxrBencoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ Microbiol. 2014;16:3055–3071. doi:10.1111/1462-2920.12300
  • Zhang H, Sekiguchi Y, Hanada S, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol. 2003;53:1155–1163. doi:10.1099/ijs.0.02520-0
  • Fan FL, Yu B, Wang BR, et al. Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories. Soil Biol Biochem. 2019;135:213–221. doi:10.1016/j.soilbio.2019.05.001
  • Li W, Zhen Y, Li N, et al. Sulfur transformation and bacterial community dynamics in both desulfurization-denitrification biofilm and suspended activated sludge. Bioresour Technol. 2022;343:126108. doi:10.1016/j.biortech.2021.126108
  • Cheng YY, Xuan XP, Zhang LN, et al. Storage of aerobic granular sludge embedded in agar and its reactivation by real wastewater. J Water Health. 2018;16:958–969. doi:10.2166/wh.2018.163
  • Oliveira AS, Amorim CL, Mesquita DP, et al. Increased extracellular polymeric substances production contributes for the robustness of aerobic granular sludge during long-term intermittent exposure to 2-fluorophenol in saline wastewater. J. Water Process Eng. 2021.
  • Wang Y, Wang J, Liu Z, et al. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. Sci Total Environ. 2021;795:148682. doi:10.1016/j.scitotenv.2021.148682
  • Zhang M, Tan Y, Fan Y, et al. Nitrite accumulation, denitrification kinetic and microbial evolution in the partial denitrification process: the combined effects of carbon source and nitrate concentration. Bioresour Technol. 2022;361:127604. doi:10.1016/j.biortech.2022.127604
  • Zhang ZM, Wang LL, Ji YT, et al. Understanding the N-acylated homoserine lactones(AHLs)-based quorum sensing for the stability of aerobic granular sludge in the aspect of substrate hydrolysis enhancement. Sci Total Environ. 2023;858:159581. doi:10.1016/j.scitotenv.2022.159581
  • Zhang ZM, Qiu JX, Xiang RH, et al. Organic loading rate (OLR) regulation for enhancement of aerobic sludge granulation: role of key microorganism and their function. Sci Total Environ. 2019;653:630–637. doi:10.1016/j.scitotenv.2018.10.418

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.