105
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhanced degradation of reactive black 5 via persulfate activation by natural bornite: influencing parameters, mechanism and degradation pathway

, , , , , , & show all
Pages 3961-3973 | Received 31 May 2023, Accepted 02 Jul 2023, Published online: 24 Jul 2023

References

  • Al-Tohamy R, Ali SS, Li F, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160, doi:10.1016/j.ecoenv.2021.113160
  • Fadaei S, Noorisepehr M, Pourzamani H, et al. Heterogeneous activation of peroxymonosulfate with Fe3O4 magnetic nanoparticles for degradation of reactive black 5: batch and column study. J Environ Chem Eng. 2021;9:105414, doi:10.1016/j.jece.2021.105414
  • Carney Almroth B, Cartine J, Jönander C, et al. Assessing the effects of textile leachates in fish using multiple testing methods: from gene expression to behavior. Ecotoxicol Environ Saf. 2021;207:111523, doi:10.1016/j.ecoenv.2020.111523
  • Yan J, Zuo X, Yang S, et al. Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: competitive versus synergistic. J Hazard Mater. 2022;424:127435, doi:10.1016/j.jhazmat.2021.127435
  • Ali SS, Sun J, Koutra E, et al. Construction of a novel cold-adapted oleaginous yeast consortium valued for textile azo dye wastewater processing and biorefinery. Fuel. 2021;285:119050, doi:10.1016/j.fuel.2020.119050
  • Kumar PS, Joshiba GJ, Femina CC, et al. A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalin Water Treat. 2019;172:395–416. doi:10.5004/dwt.2019.24613
  • Liu X, Liu Y, Qin H, et al. Selective removal of phenolic compounds by peroxydisulfate activation: inherent role of hydrophobicity and interface ROS. Environ Sci Technol. 2022;56:2665–2676. doi:10.1021/acs.est.1c07469
  • Zhang T, Wu S, Li N, et al. Applications of vacancy defect engineering in persulfate activation. Performance and internal mechanism. . J Hazard Mater. 2023;449:130971, doi:10.1016/j.jhazmat.2023.130971
  • Liu C, Wang Z, Hua S, et al. Sewage sludge derived magnetic biochar effectively activates peroxymonosulfate for the removal of norfloxacin. Sep Purif Technol. 2023;314:123674, doi:10.1016/j.seppur.2023.123674
  • Hassani A, Scaria J, Ghanbari F, et al. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: a review on relevant activation mechanisms, performance, and perspectives. Environ Res. 2023;217:114789, doi:10.1016/j.envres.2022.114789
  • Zhou Q, Hong P, Shi X, et al. Efficient degradation of tetracycline by a novel nanoconfinement structure Cu2O/Cu@MXene composite. J Hazard Mater. 2023;448:130995, doi:10.1016/j.jhazmat.2023.130995
  • Li J-Y, Liu Z-Q, Cui Y-H, et al. Abatement of aromatic contaminants from wastewater by a heat/persulfate process based on a polymerization mechanism. Environ Sci Technol. 2023. doi:10.1021/acs.est.2c06137
  • Cai H, Zou J, Lin J, et al. Elimination of acetaminophen in sodium carbonate-enhanced thermal/peroxymonosulfate process: performances, influencing factors and mechanism. Chem Eng J. 2022;449:137765, doi:10.1016/j.cej.2022.137765
  • Ma Y, Wang Z, Yang W, et al. Insights into the radical and nonradical oxidation degradation of ciprofloxacin in peroxodisulfate activation by ultraviolet light. J Water Process Eng. 2022;49:103184, doi:10.1016/j.jwpe.2022.103184
  • Wang Y, Huang Y, Gou G, et al. Dispersed cobalt embedded nitrogen-rich carbon framework activates peroxymonosulfate for carbamazepine degradation: cobalt leaching restriction and mechanism investigation. Chemosphere. 2023;321:138026, doi:10.1016/j.chemosphere.2023.138026
  • Li J, Yang L, Lai B, et al. Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal. Chem Eng J. 2021;414:128674, doi:10.1016/j.cej.2021.128674
  • Sun Z, Zhu L, Liu Y, et al. Degradation of 1,3,6,8-tetrabromocarbazole by sulfidated zero-valent iron activated peroxydisulfate: mechanistic insight and transformation pathways. Chem Eng J. 2023;458:141439, doi:10.1016/j.cej.2023.141439
  • So HL, Chu W. Novel column reactor design for simultaneous photocatalysis and adsorption of 1-naphthol by FeOOH/peroxymonosulfate: modelling the kinetics and concentration gradient. Chem Eng J. 2023;451:138598, doi:10.1016/j.cej.2022.138598
  • Du C, Yang S, Ding D, et al. Origin of synergistic effect between Fe/Mn minerals and biochar for peroxymonosulfate activation. Chem Eng J. 2023;453:139899, doi:10.1016/j.cej.2022.139899
  • He S, Chen Y, Li X, et al. Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: a critical review. ACS EST Eng. 2022;2:527–546. doi:10.1021/acsestengg.1c00330
  • Akbari S, Moussavi G, Decker J, et al. Superior visible light-mediated catalytic activity of a novel N-doped, Fe3O4-incorporating MgO nanosheet in presence of PMS: imidacloprid degradation and implications on simultaneous bacterial inactivation. Appl Catal B Environ. 2022;317:121732, doi:10.1016/j.apcatb.2022.121732
  • Huang X, Ren W, Liu X, et al. CuMgFe-LDO as superior peroxymonosulfate activator for imidacloprid removal: performance, mechanism and effect of pH. Chem Eng J. 2022;441:136135, doi:10.1016/j.cej.2022.136135
  • Zhang H, Zhou C, Zeng H, et al. Novel sulfur vacancies featured MIL-88A(Fe)@CuS rods activated peroxymonosulfate for coumarin degradation: different reactive oxygen species generation routes under acidic and alkaline pH. Process Saf Environ Prot. 2022;166:11–22. doi:10.1016/j.psep.2022.07.060
  • Li T, Li M, Jiang J, et al. Bimetallic (Cu, Zn). ZIF-derived S-scheme heterojunction for efficient remediation of aqueous pollutants in visible light/peroxymonosulfate system. Appl Catal B Environ. 2023;330:122539, doi:10.1016/j.apcatb.2023.122539
  • Wang X, Wang Y, Chen N, et al. Pyrite enables persulfate activation for efficient atrazine degradation. Chemosphere. 2020;244:125568, doi:10.1016/j.chemosphere.2019.125568
  • Nie W, Mao Q, Ding Y, et al. Highly efficient catalysis of chalcopyrite with surface bonded ferrous species for activation of peroxymonosulfate toward degradation of Bisphenol A: a mechanism study. J Hazard Mater. 2019;364:59–68. doi:10.1016/j.jhazmat.2018.09.078
  • Yuan G-E, Qin Y, Feng M, et al. Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe3+/Fe2+ couple for degradation of organic pollutants. Ecotoxicol Environ Saf. 2021;212:111975, doi:10.1016/j.ecoenv.2021.111975
  • Dong W, Cai T, Liu Y, et al. Rapid removal of organic pollutants by a novel persulfate/brochantite system: Mechanism and implication. J Colloid Interface Sci. 2021;585:400–407. doi:10.1016/j.jcis.2020.11.106
  • He P, Zhu J, Chen Y, et al. Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction. Chem Eng J. 2021;406:126758, doi:10.1016/j.cej.2020.126758
  • Yuan TK, Wang XD, Zhao XC, et al. Efficient degradation of minocycline by natural bornite-activated hydrogen peroxide and persulfate: kinetics and mechanisms. Environ Sci Pollut Res. 2021;28:69314–69328. doi:10.1007/s11356-021-15500-2
  • Zhang X, Deng H, Zhang G, et al. Natural bornite as an efficient and cost-effective persulfate activator for degradation of tetracycline. Performance and mechanism. Chem Eng J. 2020;381:122717, doi:10.1016/j.cej.2019.122717
  • Zhang H, Wang X, Zhao X, et al. Dolomite as a low-cost peroxymonosulfate activator for the efficient degradation of tetracycline: performance, mechanism and toxicity evolution. J Water Process Eng. 2022;49:103110, doi:10.1016/j.jwpe.2022.103110
  • Shi Q, Wang W, Zhang H, et al. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresour Technol. 2023: 129213, doi:10.1016/j.biortech.2023.129213
  • Peng Q, Tang XK, Liu K, et al. High-Efficiency catalysis of peroxymonosulfate by MgO for the degradation of organic pollutants. Minerals. 2020;10; doi:10.3390/min10010002
  • Su X, Guo Y, Yan L, et al. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline. Sep Purif Technol. 2022;282:120118, doi:10.1016/j.seppur.2021.120118
  • Zhang H, Jia Q, Yan F, et al. Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter. Green Energy Environ. 2022;7:105–115. doi:10.1016/j.gee.2020.08.005
  • Xin S, Liu G, Ma X, et al. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism. Appl Catal B Environ. 2021;280:119386, doi:10.1016/j.apcatb.2020.119386
  • Wang H, Chen T, Chen D, et al. Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation. Appl Catal B Environ. 2020;260:118203, doi:10.1016/j.apcatb.2019.118203
  • Li X, Hou T, Yan L, et al. Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways. J Hazard Mater. 2020;398:122884, doi:10.1016/j.jhazmat.2020.122884
  • Lu J, Zhou Y, Zhou Y. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem Eng J. 2021;422:130126, doi:10.1016/j.cej.2021.130126
  • Alexopoulou C, Petala A, Frontistis Z, et al. Copper phosphide and persulfate salt: a novel catalytic system for the degradation of aqueous phase micro-contaminants. Appl Catal B Environ. 2019;244:178–187. doi:10.1016/j.apcatb.2018.11.058
  • Hassani A, Eghbali P, Mahdipour F, et al. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism. Chem Eng J. 2023;453:139556, doi:10.1016/j.cej.2022.139556
  • Lei Y, Lei X, Westerhoff P, et al. Reactivity of chlorine radicals (Cl• and Cl2•–) with dissolved organic matter and the formation of chlorinated byproducts. Environ Sci Technol. 2020;55:689–699. doi:10.1021/acs.est.0c05596
  • Yaghoot-Nezhad A, Wacławek S, Madihi-Bidgoli S, et al. Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: a new approach for Bisphenol A degradation in saline wastewater. J Hazard Mater. 2023;445:130626, doi:10.1016/j.jhazmat.2022.130626
  • Guo T, Jiang L, Huang H, et al. Enhanced degradation of tetracycline in water over Cu-doped hematite nanoplates by peroxymonosulfate activation under visible light irradiation. J Hazard Mater. 2021;416:125838, doi:10.1016/j.jhazmat.2021.125838
  • Ma Z, Cao H, Lv F, et al. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5. Front Environ Sci Eng. 2021;15:98, doi:10.1007/s11783-020-1372-4
  • Wu S, Yang Y, Deng S, et al. A novel preparation process of straw-based iron material for enhanced persulfate activation of reactive black 5 degradation. Environ Sci Pollut Res. 2022;29:34174–34185. doi:10.1007/s11356-022-18679-0
  • Cheng Z, Tao H, Zhang J, et al. Kbh4 modification of Fe3O4 core shell carbon microspheres promoted persulfate activation for organic contaminants degradation. Factors and Mechanism. Catal Lett. 2022: 1–12. doi:10.1007/s10562-022-04143-8
  • Wang J, Li B, Li Y, et al. Facile synthesis of atomic Fe-N-C materials and dual roles Investigation of Fe-N4 sites in fenton-like reactions. Adv Sci. 2021;8:2101824, doi:10.1002/advs.202101824
  • Li R, Lu X, Yan B, et al. Sludge-derived biochar toward sustainable peroxymonosulfate activation: regulation of active sites and synergistic production of reaction oxygen species. Chem Eng J. 2022;440:135897, doi:10.1016/j.cej.2022.135897
  • Wang Y, Peng W, Wang J, et al. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor. Appl Catal B Environ. 2022;310:121342, doi:10.1016/j.apcatb.2022.121342
  • Yang J-CE, Zhu M-P, Duan X, et al. The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: structure-dependent oxidation pathways. Appl Catal B Environ. 2021;297:120460, doi:10.1016/j.apcatb.2021.120460
  • Zhu H, Guo A, Wang S, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: Emphasizing the important role of biochar graphitization. Chem Eng J. 2022;450:138428, doi:10.1016/j.cej.2022.138428
  • Dai J, Wang Z, Chen K, et al. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of Bisphenol A: two nonradical pathways. Chem Eng J. 2023;453:139889, doi:10.1016/j.cej.2022.139889
  • Gao Y, Zhu W, Liu J, et al. Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal. Appl Catal B Environ. 2021;295:120273, doi:10.1016/j.apcatb.2021.120273
  • Wang S, Li T, Cheng X, et al. Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: a controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LDH. Water Res. 2023;233:119744, doi:10.1016/j.watres.2023.119744
  • Liu F, Wang X, Liu Z, et al. Peroxymonosulfate enhanced photocatalytic degradation of reactive black 5 by ZnO-GAC: key influencing factors, stability and response surface approach. Sep Purif Technol. 2021;279:119754, doi:10.1016/j.seppur.2021.119754

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.