115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LED-light-driven over ZnO/biochar nanocomposite for activation of peroxymonosulfate to enhanced photocatalytic removal of methyl orange dye in aqueous solutions

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 20 May 2023, Accepted 12 Aug 2023, Published online: 29 Aug 2023

References

  • Mirzaee SA, Jaafarzadeh N, Gomes HT, et al. Magnetic titanium/carbon nanotube nanocomposite catalyst for oxidative degradation of Bisphenol A from high saline polycarbonate plant effluent using catalytic wet peroxide oxidation. Chem Eng J. 2019;370:372–386. doi:10.1016/j.cej.2019.03.202
  • Gholami Z, Abtahi M, Golbini M, et al. The concentration and probabilistic health risk assessment of nitrate in Iranian drinking water: a case study of Ilam city. Toxin Rev. 2021;40(4):1048–1057. doi:10.1080/15569543.2019.1614958
  • Naseri S, Alimohammadi M, Mahvi AH, et al. Optimisation and modelling of direct blue 86 removal from aqueous solutions by cationic surfactant enhanced ultrafiltration. Int J Environ Anal Chem. 2021:1–12. doi:10.1080/03067319.2021.1982923
  • Din MI, Khalid R, Hussain Z, et al. A critical review on application of organic, inorganic and hybrid nanophotocatalytic assemblies for photocatalysis of methyl orange dye in aqueous medium. Rev Chem Eng. 2022. doi:10.1515/revce-2022-0026
  • Fakhri Y, Nematollahi A, Bafandeh Tiz P, et al. The concentration of potentially hazardous trace elements (PHTEs) among tap drinking water samples from Ilam city, Iran: A probabilistic non-carcinogenic risk study. Int J Environ Anal Chem. 2022;102(17):5122–5135. doi:10.1080/03067319.2020.1791331
  • Gonçalves MG, da Silva Veiga PA, Fornari MR, et al. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange. Sci Total Environ. 2020;748:141381. doi:10.1016/j.scitotenv.2020.141381
  • Madihi-Bidgoli S, Asadnezhad S, Yaghoot-Nezhad A, et al. Azurobine degradation using Fe2O3@multi-walled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application. J Environ Chem Eng. 2021;9(6):106660. doi:10.1016/j.jece.2021.106660
  • Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. 2018;334:1502–1517. doi:10.1016/j.cej.2017.11.059
  • Hassani A, Eghbali P, Mahdipour F, et al. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: Performance, mineralization, and activation mechanism. Chem Eng J. 2023;453:139556. doi:10.1016/j.cej.2022.139556
  • Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. J Hazard Mater. 2021;404:124191. doi:10.1016/j.jhazmat.2020.124191
  • Hassani A, Scaria J, Ghanbari F, et al. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. Environ Res. 2022;217:114789.
  • Pang YL, Law ZX, Lim S, et al. Enhanced photocatalytic degradation of methyl orange by coconut shell–derived biochar composites under visible LED light irradiation. Environ Sci Pollut Res. 2021;28:27457–27473. doi:10.1007/s11356-020-12251-4
  • Tran VA, Phung TK, Vo TK, et al. Solar-light-driven photocatalytic degradation of methyl orange dye over Co3O4-ZnO nanoparticles. Mater Lett. 2021;284:128902. doi:10.1016/j.matlet.2020.128902
  • Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable Sustainable Energy Rev. 2018;81:536–551. doi:10.1016/j.rser.2017.08.020
  • Majumder S, Chatterjee S, Basnet P, et al. ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions – A contemporary review. Environ Nanotechnol Monitor Manage. 2020;14:100386. doi:10.1016/j.enmm.2020.100386
  • Primo J, Bittencourt C, Acosta S, et al. Synthesis of zinc oxide nanoparticles by ecofriendly routes: adsorbent for copper removal from wastewater. Front Chem. 2020;8:571790. doi:10.3389/fchem.2020.571790
  • Wang Y, Wang L, Deng X, et al. A facile pyrolysis synthesis of biochar/ZnO passivator: immobilization behavior and mechanisms for Cu (II) in soil. Environ Sci Pollut Res. 2020;27:1888–1897. doi:10.1007/s11356-019-06888-z
  • Gonçalves NP, Lourenço MA, Baleuri SR, et al. Biochar waste-based ZnO materials as highly efficient photocatalysts for water treatment. J Environ Chem Eng. 2022;10(2):107256. doi:10.1016/j.jece.2022.107256
  • Kaur M, Kaur H. Synergistic effect of biochar impregnated with ZnO nano-flowers for effective removal of organic pollutants from wastewater. Appl Surf Sci Adv. 2022;12:100339. doi:10.1016/j.apsadv.2022.100339
  • Lotfi H, Heydarinasab A, Mansouri M, et al. Kinetic modeling of removal of aromatic hydrocarbons from petroleum wastewaters by UiO-66-NH2/TiO2/ZnO nanocomposite. J Environ Chem Eng. 2022;10(1):107066. doi:10.1016/j.jece.2021.107066
  • Nademi M, Moradi G, Mansouri M. A comprehensive study on the photocatalytic activity of CuO-doped ZrO2–ZnO nanocomposites under visible light. Inorganic Nano-Metal Chem. 2022;52(11):1383–1395.
  • Mansouri M, Sadeghian S, Mansouri G, et al. Enhanced photocatalytic performance of UiO-66-NH2/TiO2 composite for dye degradation. Environ Sci Pollut Res. 2021;28:25552–25565. doi:10.1007/s11356-020-12098-9
  • Noorimotlagh Z, Darvishi Cheshmeh Soltani R, Shams Khorramabadi G, et al. Performance of wastewater sludge modified with zinc oxide nanoparticles in the removal of methylene blue from aqueous solutions. Desalinat Water Treatment. 2016;57(4):1684–1692. doi:10.1080/19443994.2014.977954
  • Jaafarzadeh N, Baboli Z, Noorimotlagh Z, et al. Efficient adsorption of bisphenol A from aqueous solutions using low-cost activated carbons produced from natural and synthetic carbonaceous materials. Desalinat Water Treatment. 2019;154:177–187. doi:10.5004/dwt.2019.23897
  • Noorimotlagh Z, Mirzaee SA, Martinez SS, et al. Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: equilibrium isotherms, kinetics and thermodynamic study. Chem Eng Res Design. 2019;141:290–301. doi:10.1016/j.cherd.2018.11.007
  • Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, et al. Improved performance of immobilized TiO2 under visible light for the commercial surfactant degradation: Role of carbon doped TiO2 and anatase/rutile ratio. Catal Today. 2020a;348:277–289. doi:10.1016/j.cattod.2019.08.051
  • Noorimotlagh Z, Ravanbakhsh M, Valizadeh MR, et al. Optimization and genetic programming modeling of humic acid adsorption onto prepared activated carbon and modified by multi-wall carbon nanotubes. Polyhedron. 2020b;179:114354. doi:10.1016/j.poly.2020.114354
  • Mirzaee SA, Bayati B, Valizadeh MR, et al. Adsorption of diclofenac on mesoporous activated carbons: physical and chemical activation, modeling with genetic programming and molecular dynamic simulation. Chem Eng Res Design. 2021;167:116–128. doi:10.1016/j.cherd.2020.12.025
  • Safari M, Rostami MH, Alizadeh M, et al. Response surface analysis of photocatalytic degradation of methyl tert-butyl ether by core/shell Fe3O4/ZnO nanoparticles. J Environ Health Sci Eng. 2014;12:1–10. doi:10.1186/2052-336X-12-1
  • López JGP, Pichardo OHG, Escobar JAP, et al. Photocatalytic degradation of metoprolol in aqueous medium using a TiO2/natural zeolite composite. Fuel. 2021;284:119030. doi:10.1016/j.fuel.2020.119030
  • Mansouri M, Yari H, Kikhavani T, et al. UVA/TiO2–ZnO–NiO photocatalytic oxidation process of dye: optimization and CFD simulation. Arab J Sci Eng. 2022;47:6059–6072.
  • Boehm H. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon N Y. 1994;32(5):759–769. doi:10.1016/0008-6223(94)90031-0
  • Kang Y-H, Shiue A, Hu S-C, et al. Using phosphoric acid-impregnated activated carbon to improve the efficiency of chemical filters for the removal of airborne molecular contaminants (AMCs) in the make-up air unit (MAU) of a cleanroom. Build Environ. 2010;45(4):929–935. doi:10.1016/j.buildenv.2009.09.012
  • Lin J, Luo Z, Liu J, et al. Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater Sci Semicond Process. 2018;87:24–31. doi:10.1016/j.mssp.2018.07.003
  • Lu Y, Cai Y, Zhang S, et al. Application of biochar-based photocatalysts for adsorption-(photo)degradation/reduction of environmental contaminants: mechanism, challenges and perspective. Biochar. 2022;4(1):45. doi:10.1007/s42773-022-00173-y
  • Jing H, Ji L, Wang Z, et al. Synthesis of ZnO nanoparticles loaded on biochar derived from spartina alterniflora with superior photocatalytic degradation performance. Nanomaterials. 2021;11(10):2479. doi:10.3390/nano11102479
  • Dhandapani KV, Anbumani D, Gandhi AD, et al. Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatal Agric Biotechnol. 2020;24:101517. doi:10.1016/j.bcab.2020.101517
  • Zhong Y, Shih K, Diao Z, et al. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chem Eng J. 2021;417:129225. doi:10.1016/j.cej.2021.129225
  • Sobana N, Krishnakumar B, Swaminathan M. Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide. Mater Sci Semicond Process. 2013;16(3):1046–1051. doi:10.1016/j.mssp.2013.01.002
  • Hasanpour M, Motahari S, Jing D, et al. Numerical modeling for the photocatalytic degradation of methyl orange from aqueous solution using cellulose/zinc oxide hybrid aerogel: Comparison with experimental data. Topics Catal. 2021:1–14. doi:10.1007/s11244-021-01451-y
  • Alkan M, Çelikçapa S, Demirbaş Ö, et al. Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes Pigments. 2005;65(3):251–259. doi:10.1016/j.dyepig.2004.07.018
  • Fang R, Cheng X, Xu X. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour Technol. 2010;101(19):7323–7329. doi:10.1016/j.biortech.2010.04.094
  • Li H, Guo J, Yang L, et al. Degradation of methyl orange by sodium persulfate activated with zero-valent zinc. Sep Purif Technol. 2014;132:168–173. doi:10.1016/j.seppur.2014.05.015
  • Noorimotlagh Z, Dehvari M, Mirzaee SA, et al. Efficient sonocatalytic degradation of orange II dye and real textile wastewater using peroxymonosulfate activated with a novel heterogeneous TiO2–FeZn bimetallic nanocatalyst. J Iranian Chem Soc. 2023;20(7):1589–1603. doi:10.1007/s13738-023-02780-3
  • Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl Catal B: Environmental. 2004;49(1):1–14. doi:10.1016/j.apcatb.2003.11.010
  • Mian MM, Liu G. Activation of peroxymonosulfate by chemically modified sludge biochar for the removal of organic pollutants: understanding the role of active sites and mechanism. Chem Eng J. 2020;392:123681. doi:10.1016/j.cej.2019.123681
  • Daneshvar N, Salari D, Khataee A. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A: Chem. 2004;162(2-3):317–322. doi:10.1016/S1010-6030(03)00378-2
  • Chen L-C, Tsai F-R, Huang C-M. Photocatalytic decolorization of methyl orange in aqueous medium of TiO2 and Ag–TiO2 immobilized on γ-Al2O3. J Photochem Photobiol A: Chem. 2005;170(1):7–14. doi:10.1016/j.jphotochem.2004.07.012
  • Chen X, Wang W, Xiao H, et al. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem Eng J. 2012;193-194:290–295. doi:10.1016/j.cej.2012.04.033
  • Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, et al. The visible-light photodegradation of nonylphenol in the presence of carbon-doped TiO2 with rutile/anatase ratio coated on GAC: effect of parameters and degradation mechanism. J Hazard Mater. 2018;350:108–120. doi:10.1016/j.jhazmat.2018.02.022
  • Reddy CV, Babu B, Reddy IN, et al. Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram Int. 2018;44(6):6940–6948. doi:10.1016/j.ceramint.2018.01.123
  • Znad H, Abbas K, Hena S, et al. Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng. 2018;6(1):218–227. doi:10.1016/j.jece.2017.11.077
  • Papadam T, Xekoukoulotakis NP, Poulios I, et al. Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J Photochem Photobiol A: Chem. 2007;186(2-3):308–315. doi:10.1016/j.jphotochem.2006.08.023
  • Zheng P, Pan Z, Li H, et al. Effect of different type of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids. J Mater Sci: Mater Electron. 2015;26:6399–6410. doi:10.1007/s10854-015-3229-3
  • Foteinis S, Borthwick AG, Frontistis Z, et al. Environmental sustainability of light-driven processes for wastewater treatment applications. J Clean Prod. 2018;182:8–15. doi:10.1016/j.jclepro.2018.02.038
  • Mirzaee SA, Jaafarzadeh N, Jorfi S, et al. Enhanced degradation of Bisphenol A from high saline polycarbonate plant wastewater using wet air oxidation. Process Safety Environ Protect. 2018;120:321–330. doi:10.1016/j.psep.2018.09.021
  • Li S, Wang Z, Zhao X, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation. Chem Eng J. 2019;360:600–611. doi:10.1016/j.cej.2018.12.002
  • Li M, Guan R, Li J, et al. Photocatalytic performance and mechanism research of Ag/HSTiO2 on degradation of methyl orange. ACS Omega. 2020;5(34):21451–21457. doi:10.1021/acsomega.0c01832
  • Lin C, Gao Y, Zhang J, et al. GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J Mater Res. 2020;35(10):1307–1315. doi:10.1557/jmr.2020.41
  • Shan R, Lu L, Gu J, et al. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater Sci Semicond Process. 2020;114:105088. doi:10.1016/j.mssp.2020.105088
  • Zyoud A, Zu’bi A, Helal MH, et al. Optimizing photo-mineralization of aqueous methyl orange by nano-ZnO catalyst under simulated natural conditions. J Environ Health Sci Eng. 2015;13:1–10. doi:10.1186/s40201-015-0204-0
  • Palanisamy G, Nguyen B-S, Nguyen V-Q, et al. Novel biomolecule-capped CdTe nanoparticles for highly efficient photodegradation of methyl orange dye under visible-light irradiation. Mater Lett. 2020;275:128167. doi:10.1016/j.matlet.2020.128167

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.