56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cations impact the biodegradation of iodosulfuron-methyl herbicidal ionic liquids by fungi

, , , , , , & show all
Received 20 Nov 2023, Accepted 12 May 2024, Published online: 07 Jun 2024

References

  • Popp J, Pető K, Nagy J. Pesticide productivity and food security. A review. Agron Sustain Dev. 2013;33:243–255. doi:10.1007/s13593-012-0105-x
  • Mesnage R. 4 -Coformulants in commercial herbicides. In: Mesnage R, Zaller JG, editors. Herbicides. Emerging issues in analytical chemistry. Elsevier; 2021. p. 87–111. doi:10.1016/B978-0-12-823674-1.00010-9
  • Pacanoski Z. Herbicides and adjuvants. In: Price A, Kelton J, Sarunaite L, editors. Herbicides, physiology of action, and safety. Rijeka: IntechOpen; 2015. p. Ch. 6.
  • Wilms W, Wozniak-Karczewska M, Syguda A, et al. Herbicidal ionic liquids: A promising future for old herbicides? Review on synthesis, toxicity, biodegradation, and efficacy studies. J Agric Food Chem. 2020;68:10456–10488. doi:10.1021/acs.jafc.0c02894
  • Holloway PJ, Butler Ellis MC, Webb DA, et al. Effects of some agricultural tank-mix adjuvants on the deposition efficiency of aqueous sprays on foliage. Crop Prot. 2000;19:27–37. doi:10.1016/S0261-2194(99)00079-4
  • Green JM, Beestman GB. Recently patented and commercialized formulation and adjuvant technology. Crop Prot. 2007;26:320–327. doi:10.1016/j.cropro.2005.04.018
  • Sharma RS, Goswami-Giri AS. Environment friendly herbicidal compositions. Chem Sci Rev Lett. 2015;2015:753–757.
  • Lan Y, Hoffmann WC, Fritz BK, et al. Spray drift mitigation with spray mix adjuvants. Am Soc Agric Biol Eng. 2008;24:5–10.
  • Celen IH. The effect of spray mix adjuvants on spray drift. Bulg J Agric Sci. 2010;16:105–110.
  • Travlos I, Cheimona N, Bilalis D. Glyphosate efficacy of different salt formulations and adjuvant additives on various weeds. Agronomy. 2017;7(3):60. doi:10.3390/agronomy7030060
  • Defarge N, Spiroux de Vendômois J, Séralini GE. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Reports. 2018;5:156–163. doi:10.1016/j.toxrep.2017.12.025
  • Mesnage R, Antoniou MN. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front Public Heal. 2018;5:1–8. doi:10.3389/fpubh.2017.00361
  • Mesnage R, Defarge N, De Vendômois JS, et al. Major pesticides are more toxic to human cells than their declared active principles. Biomed Res Int. 2014;2014:179691. doi:10.1155/2014/179691
  • Mesnage R, Bernay B, Séralini GE. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology. 2013;313:122–128. doi:10.1016/j.tox.2012.09.006
  • Brühl CA, Schmidt T, Pieper S, et al. Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep. 2013;3:1135. doi:10.1038/srep01135
  • Kleinhenz LS, Nugegoda D, Verspaandonk ER, et al. Toxicity of an herbicide and adjuvant to saltmarsh invertebrates in the management of invasive grass; Comparative laboratory and field tests. Mar Pollut Bull. 2016;109:334–343. doi:10.1016/j.marpolbul.2016.05.061
  • Adams E, Gerstle V, Schmitt T, et al. Co-formulants and adjuvants affect the acute aquatic and terrestrial toxicity of a cycloxydim herbicide formulation to European common frogs (Rana temporaria). Sci Total Environ. 2021;789:147865. doi:10.1016/j.scitotenv.2021.147865
  • Pernak J, Syguda A, Janiszewska D, et al. Ionic liquids with herbicidal anions. Tetrahedron. 2011;67:4838–4844. doi:10.1016/j.tet.2011.05.016
  • Pernak J, Kaczmarek DK, Rzemieniecki T, et al. Dicamba-based herbicides: herbicidal ionic liquids versus commercial forms. J Agric Food Chem. 2020;68:4588–4594. doi:10.1021/acs.jafc.0c00632
  • Tang G, Niu J, Zhang W, et al. Preparation of acifluorfen-based ionic liquids with fluorescent properties for enhancing biological activities and reducing the risk to the aquatic environment. J Agric Food Chem. 2020;68:6048–6057. doi:10.1021/acs.jafc.0c00842
  • Parus A, Homa J, Radoński D, et al. Novel esterquat-based herbicidal ionic liquids incorporating MCPA and MCPP for simultaneous stimulation of maize growth and fighting cornflower. Ecotoxicol Environ Saf. 2021;208:111595. doi:10.1016/j.ecoenv.2020.111595
  • Stachowiak W, Smolibowski M, Kaczmarek DK, et al. Toward revealing the role of the cation in the phytotoxicity of the betaine-based esterquats comprising dicamba herbicide. Sci Total Environ. 2022;845:157181. doi:10.1016/j.scitotenv.2022.157181
  • Niemczak M, Rzemieniecki T, Sobiech Ł, et al. Influence of the alkyl chain length on the physicochemical properties and biological activity in a homologous series of dichlorprop-based herbicidal ionic liquids. J Mol Liq. 2019;276:431–440. doi:10.1016/j.molliq.2018.12.013
  • Niu J, Zhang Z, Tang J, et al. Dicationic ionic liquids of herbicide 2,4-dichlorophenoxyacetic acid with reduced negative effects on environment. J Agric Food Chem. 2018;66:10362–10368. doi:10.1021/acs.jafc.8b02584
  • Ding G, Guo D, Zhang W, et al. Preparation of novel auxinic herbicide derivatives with high-activity and low-volatility by me-too method. Arab J Chem. 2019;12:4707–4718. doi:10.1016/j.arabjc.2016.09.001
  • Stachowiak W, Szumski R, Homa J, et al. Transformation of iodosulfuron-methyl into ionic liquids enables elimination of additional surfactants in commercial formulations of sulfonylureas. Molecules. 2021;26(15):4396. doi:10.3390/molecules26154396
  • Tang G, Liu Y, Ding G, et al. Ionic liquids based on bromoxynil for reducing adverse impacts on the environment and human health. New J Chem. 2017;41:8650–8655. doi:10.1039/C7NJ01694H
  • Parus A, Lisiecka N, Zembrzuska J, et al. Evaluation of the influence of different cations on the mobility and performance of dicamba-based ionic liquids. J Environ Chem Eng. 2022;10(5). doi:10.1016/j.jece.2022.108397
  • Wilms W, Parus A, Homa J, et al. Glyphosate versus glyphosate based ionic liquids: effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation. Chemosphere. 2023a;316:137717. doi:10.1016/j.chemosphere.2022.137717
  • Pernak J, Czerniak K, Niemczak M, et al. Herbicidal ionic liquids based on esterquats. New J Chem. 2015;39:5715–5724. doi:10.1039/C5NJ00609K
  • Pernak J, Czerniak K, Niemczak M, et al. Bioherbicidal ionic liquids. ACS Sustain Chem Eng. 2018;6:2741–2750. doi:10.1021/acssuschemeng.7b04382
  • Pernak J, Niemczak M, Chrzanowski Ł, et al. Betaine and carnitine derivatives as herbicidal ionic liquids. Chem - A Eur J. 2016;22:12012–12021. doi:10.1002/chem.201601952
  • Niemczak M, Chrzanowski Ł, Praczyk T, et al. Biodegradable herbicidal ionic liquids based on synthetic auxins and analogues of betaine. New J Chem. 2017;41:8066–8077. doi:10.1039/C7NJ01474K
  • Sydow M, Owsianiak M, Framski G, et al. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: effects of toxicity and biodegradation. Ecotoxicol Environ Saf. 2018;147:157–164. doi:10.1016/j.ecoenv.2017.08.026
  • Czarny J, Piotrowska-Cyplik A, Lewicki A, et al. The toxic effect of herbicidal ionic liquids on biogas-producing microbial community. Int J Environ Res Public Health. 2019;16(6):916. doi:10.3390/ijerph16060916
  • Zhang R, Vivanco JM, Shen Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr Opin Microbiol. 2017;37:8–14. doi:10.1016/j.mib.2017.03.008
  • Hirt H. Healthy soils for healthy plants for healthy humans. EMBO Rep. 2020;21:1–5. doi:10.15252/embr.202051069
  • Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–486. doi:10.1016/j.tplants.2012.04.001
  • Besset-Manzoni Y, Rieusset L, Joly P, et al. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res. 2018;25:29953–29970. doi:10.1007/s11356-017-1152-2
  • Ali MA, Naveed M, Mustafa A, et al. The good, the bad, and the ugly of rhizosphere microbiome. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics and plant health. Singapore: Springer Nature; 2017. p. 253–290.
  • Khan N, Ali S, Shahid MA, et al. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells. 2021;10(6):1551. doi:10.3390/cells10061551
  • Cassán FD, Okon Y, Creus CM. Handbook for azospirillum: technical issues and protocols. Switzerland, Cham: Springer International Publishing; 2015.
  • Mendes R, Raaijmakers JM. Cross-kingdom similarities in microbiome functions. ISME J. 2015;9:1905–1907. doi:10.1038/ismej.2015.7
  • Lei Q, Zhong J, Chen S-F, et al. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. Environ Res. 2023;235:116570. doi:10.1016/j.envres.2023.116570
  • Wang X, Zhang Y, Li Z, et al. Rapid degradation of the sulfonylurea herbicide–chlorimuron-ethyl by three novel strains of fungi. Bioremediat J. 2023;27:137–146. doi:10.1080/10889868.2022.2029822
  • Zhong J, Wu S, Chen WJ, et al. Current insights into the microbial degradation of nicosulfuron: strains, metabolic pathways, and molecular mechanisms. Chemosphere. 2023;326:138390. doi:10.1016/j.chemosphere.2023.138390
  • United Nations Food and Agriculture Organisation FAOSTAT Pesticides Use. (2023). https://www.fao.org/faostat/en/#data/RP. Accessed 23 Oct 2023.
  • Bourdineaud JP. Toxicity of the herbicides used on herbicide-tolerant crops, and societal consequences of their use in France. Drug Chem Toxicol. 2022;45:698–721. doi:10.1080/01480545.2020.1770781
  • Wilms W, Woźniak-Karczewska M, Niemczak M, et al. 2,4-D versus 2,4-D based ionic liquids: effect of cation on herbicide biodegradation,: tfdA genes abundance and microbiome changes during soil bioaugmentation. J Hazard Mater. 2023b;452:131209. doi:10.1016/j.jhazmat.2023.131209
  • Kaczmarek DK, Kleiber T, Wenping L, et al. Transformation of indole-3-butyric acid into ionic liquids as a sustainable strategy leading to highly efficient plant growth stimulators. ACS Sustain Chem Eng. 2020;8:1591–1598. doi:10.1021/acssuschemeng.9b06378
  • Toju H, Tanabe AS, Yamamoto S, et al. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One. 2012;7(7):e40863. doi:10.1371/journal.pone.0040863
  • Hannon GJ. (2010). FASTX-Toolkit. http://hannonlab.cshl.edu.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi:10.1093/bioinformatics/btu170
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–583. doi:10.1038/nmeth.3869
  • Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857. doi:10.1038/s41587-019-0209-9
  • Bengtsson-Palme J, Ryberg M, Hartmann M, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–919. doi:10.1111/2041-210X.12073
  • Zhang Z, Schwartz S, Wagner L, et al. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–214. doi:10.1089/10665270050081478
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: MA Innis, Gelfand DH, Sninsky JJ, White TJ, editor. PCR protocols. Academic Press; 1990. p. 315–322.
  • Gálvez L, Urbaniak M, Waśkiewicz A, et al. Fusarium proliferatum – causal agent of garlic bulb rot in Spain: genetic variability and mycotoxin production. Food Microbiol. 2017;67:41–48. doi:10.1016/j.fm.2017.05.006
  • Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–1330. doi:10.1128/aem.61.4.1323-1330.1995
  • Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol. 1999;16:1799–1808. doi:10.1093/oxfordjournals.molbev.a026092
  • Houbraken J, Samson RA. Phylogeny of penicillium and the segregation of trichocomaceae into three families. Stud Mycol. 2011;70:1–51. doi:10.3114/sim.2011.70.01
  • Kapadiya IB, Akbari LF, Siddhapara MR, et al. Evaluation of fungicides and herbicides against the root rot of Okra. The Bioscan. 2013;8:433–436.
  • Shabeer S, Tahira R, Jamal A. Fusarium spp. mycotoxin production, diseases and their management: an overview. Pakistan J Agric Res. 2021;34:278–293. doi:10.17582/journal.pjar/2021/34.2.278.293
  • Coleman JJ. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol. 2016;17:146–158. doi:10.1111/mpp.12289
  • Jangir M, Pathak R, Sharma S, et al. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control. 2018;123:60–70. doi:10.1016/j.biocontrol.2018.04.018
  • Hong JW, Park JY, Gadd GM. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol. 2010;108:2030–2040. doi:10.1111/j.1365-2672.2009.04613.x
  • Miglani R, Parveen N, Kumar A, et al. Degradation of xenobiotic pollutants: an environmentally sustainable approach. Metabolites. 2022;12(9):818. doi:10.3390/metabo12090818
  • Al-Otibi F, Al-Zahrani RM, Marraiki N. Biodegradation of selected hydrocarbons by fusarium species isolated from contaminated soil samples in Riyadh, Saudi Arabia. J. Fungi. 2023;9(2):216. doi:10.3390/jof9020216
  • Castro JV, Peralba MCR, Ayub MAZ. Biodegradation of the herbicide glyphosate by filamentous fungi in platform shaker and batch bioreactor. J Environ Sci Heal Part B. 2007;42:883–886. doi:10.1080/03601230701623290
  • Guo J, Song X, Li R, et al. Isolation of a degrading strain of Fusarium verticillioides and bioremediation of glyphosate residue. Pestic Biochem Physiol. 2022;182:105031. doi:10.1016/j.pestbp.2021.105031
  • Markham P, Robson GD, Bainbridge BW, et al. Choline: its role in the growth of filamentous fungi and the regulation of mycelial morphology. FEMS Microbiol Rev. 1993;10(3–4):287–300.
  • Sanders LM, Zeisel SH. Choline: dietary requirements and role in brain development. Nutr Today. 2007;42:181–186. doi:10.1097/01.NT.0000286155.55343.fa
  • Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from pseudomonas aeruginosa. Appl Environ Microbiol. 2013;79(7):2112–2120. doi:10.1128/AEM.03565-12
  • Lei LR, Gong LQ, Jin MY, et al. Research advances in the structures and biological activities of secondary metabolites from Talaromyces. Front Microbiol. 2022;13:984801. doi:10.3389/fmicb.2022.984801
  • Lei LR, Gong LQ, Jin MY, et al. Research advances in the structures and biological activities of secondary metabolites from Talaromyces. Front Microbiol. 2022;13:1–23. doi:10.3389/fmicb.2022.984801
  • Croitoru C, Roata IC. Ionic liquids as antifungal agents for wood preservation. Molecules. 2020;25(18):4289. doi:10.3390/molecules25184289
  • Rajkowska K, Koziróg A, Otlewska A, et al. Antifungal activity of polyoxometalate-ionic liquids on historical brick. Molecules. 2020;25(23):5663. doi:10.3390/molecules25235663
  • Li Q, Hu Y, Zhang B. Phosphonium-based ionic liquids as antifungal agents for conservation of heritage sandstone. RSC Adv. 2022;12:1922–1931. doi:10.1039/D1RA09169G
  • Pedro SN, Freire CSR, Silvestre AJD, et al. The role of ionic liquids in the pharmaceutical field: An overview of relevant applications. Int J Mol Sci. 2020;21:1–50. doi:10.3390/ijms21218298
  • Reddy GKK, Nancharaiah Y V. Alkylimidazolium ionic liquids as antifungal alternatives: antibiofilm activity against candida albicans and underlying mechanism of action. Front Microbiol. 2020;11:1–15. doi:10.3389/fmicb.2020.00001
  • Obłąk E, Futoma-Kołoch B, Wieczyńska A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World J Microbiol Biotechnol. 2021;37:1–11. doi:10.1007/s11274-020-02978-0
  • Petkovic M, Ferguson J, Bohn A, et al. Exploring fungal activity in the presence of ionic liquids. Green Chem. 2009;11:889–889. doi:10.1039/b823225c
  • Brown HM. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic Sci. 1990;29:263–281. doi:10.1002/ps.2780290304
  • Naeemah KS, Ai-jawhari IFH. (2022). Ability of Aspergillus niger and Penicillium funiculosum Isolated from wheat (Triticum astevium) field to degradation of herbicide chevalier (Iodosulfuron methyl sodium + Mesosulfuron methyl). 645–650.
  • Hashiba T, Nagasaka A. Hairpin plasmids from the plant pathogenic fungi Rhizoctoniasolani and Fusarium oxysporum. In: Meinhardt F, Klassen R, editors. BT – Microbial linear plasmids. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 227–245.
  • Láday M, Stubnya V, Hamari Z, et al. Characterization of a new mitochondrial plasmid from Fusarium proliferatum. Plasmid. 2008;59:127–133. doi:10.1016/j.plasmid.2007.11.006
  • Bertazzoni S, Williams AH, Jones DA, et al. Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Mol Plant-Microbe Interact. 2018;31:779–788. doi:10.1094/MPMI-06-17-0135-FI
  • Hoh DZ, Lee HH, Wada N, et al. Comparative genomic and transcriptomic analyses of trans-kingdom pathogen fusarium solani species complex reveal degrees of compartmentalization. BMC Biol. 2022;20:1–18. doi:10.1186/s12915-021-01182-2
  • Summerell BA, Leslie JF. Fifty years of Fusarium: how could nine species have ever been enough? Fungal Divers. 2011;50:135–144. doi:10.1007/s13225-011-0132-y
  • Sondhia S, Waseem U, Varma RK. Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere. 2013;93:2140–2147. doi:10.1016/j.chemosphere.2013.07.066
  • Gul MM, Ahmad KS. Assessment of methyl 2-({[(4,6-dimethoxypyrimidin-2-yl)carbamoyl] sulfamoyl}methyl)benzoate through biotic and abiotic degradation modes. Open Chem. 2020;18:314–324. doi:10.1515/chem-2020-0030
  • Hang BJ, Hong Q, Xie XT, et al. Sule, a sulfonylurea herbicide de-esterification esterase from Hansschlegelia zhihuaiae S113. Appl Environ Microbiol. 2012;78:1962–1968. doi:10.1128/AEM.07440-11
  • Feng W, Wei Z, Song J, et al. Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1. Sci Rep. 2017;7:1–11. doi:10.1038/s41598-016-0028-x
  • He YH, Shen DS, Fang CR, et al. Rapid biodegradation of metsulfuron-methyl by a soil fungus in pure cultures and soil. World J Microbiol Biotechnol. 2006;22:1095–1104. doi:10.1007/s11274-006-9148-y
  • Hangler M, Jensen B, Rønhede S, et al. Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiol Lett. 2007;268:254–260. doi:10.1111/j.1574-6968.2006.00599.x
  • Romero MC, Urrutia MI, Reinoso EH, et al. Wild soil fungi able to degrade the herbicide isoproturon. Revista mexicana de micología. 2008;29:1–7.
  • Song J, Gu J, Zhai Y, et al. Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour Technol. 2013;140:243–248. doi:10.1016/j.biortech.2013.02.086
  • Torra-Reventós M, Yajima M, Yamanaka S, et al. Degradation of the herbicides thiobencarb, butachlor and molinate by a newly isolated Aspergillus niger. J Pestic Sci. 2004;29:214–216. doi:10.1584/jpestics.29.214
  • Sharma S, Banerjee K, Choudhury PP. Degradation of chlorimuron-ethyl by Aspergillus niger isolated from agricultural soil. FEMS Microbiol Lett. 2012;337:18–24. doi:10.1111/1574-6968.12006
  • Zou Y, Zhao L, Teng C, et al. Isolation and characterization of Aspergillus niger TR-H degrading the chlorimuron-ethyl herbicide. Crop Prot Newsl. 2013;38:52–56.
  • Carranza CS, Bergesio M V, Barberis CL, et al. Survey of Aspergillus section Flavi presence in agricultural soils and effect of glyphosate on nontoxigenic A. flavus growth on soil-based medium. J Appl Microbiol. 2014;116:1229–1240. doi:10.1111/jam.12437
  • Sondhia S, Rajput S, Varma RK, et al. Biodegradation of the herbicide penoxsulam (triazolopyrimidine sulphonamide) by fungal strains of Aspergillus in soil. Appl Soil Ecol. 2016;105:196–206. doi:10.1016/j.apsoil.2016.03.010
  • Olu-Arotiowa O, Ajani A, Aremu M, et al. Bioremediation of atrazine herbicide contaminated soil using different bioremediation strategies. J Appl Sci Environ Manag. 2019;23:99. doi:10.4314/jasem.v23i1.16
  • Aluffi ME, Carranza CS, Benito N, et al. Isolation of culturable mycota from Argentinean soils exposed or not-exposed to pesticides and determination of glyphosate tolerance of fungal species in media supplied with the herbicide. Rev Argent Microbiol. 2020;52:221–230. doi:10.1016/j.ram.2019.11.003
  • Pandey R, Choudhury PP. Aspergillus niger-mediated degradation of orthosulfamuron in rice soil. Environ Monit Assess. 2020;192:1–10. doi:10.1007/s10661-020-08707-2
  • Abd FA-A, AI-Jawhari IFH. Ability of Aspergillus niger to degradation of herbicide Topik EC100 (Clodinafop-propargyl). Magna Sci Adv Biol Pharm. 2023;8:001–005. doi:10.30574/msabp.2023.8.2.0023
  • Herrera-Gallardo BE, Guzmán-Gil R, Colín-Luna JA, et al. Atrazine biodegradation in soil by Aspergillus niger. Can J Chem Eng. 2021;99:932–946. doi:10.1002/cjce.23924
  • Carranza CS, Regñicoli JP, Aluffi ME, et al. Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. Int J Environ Sci Technol. 2019;16:7673–7682. doi:10.1007/s13762-019-02347-x
  • Zanardini E, Negri M, Boschin G, et al. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger. ScientificWorldJournal. 2002;2:1501–1506. doi:10.1100/tsw.2002.281
  • Ntana F, Mortensen UH, Sarazin C, et al. Aspergillus: a powerful protein production platform. Catalysts. 2020;10(9):1064. doi:10.3390/catal10091064.
  • Cairns TC, Barthel L, Meyer V. Something old, something new: challenges and developments in Aspergillus Niger biotechnology. Essays Biochem. 2021;65:213–224. doi:10.1042/EBC20200139
  • El-Gendi H, Saleh AK, Badierah R, et al. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. J Fungi. 2022;8(1):23. doi:10.3390/jof8010023
  • Berger BM, Janowitz K, Menne HJ, et al. Comparative study on microbial and chemical transformation of eleven sulfonylurea herbicides in soil / Vergleichende Untersuchung zum biotischen und abiotischen Ab- und Umbau von Sulfonylharnstoff-Herbiziden in Boden. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection. 1998;105:611–623.
  • Boschin G, D’Agostina A, Arnoldi A, et al. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes. 2003;38:737–746. doi:10.1081/PFC-120025557
  • Parus A, Zdebelak O, Ciesielski T, et al. Can ionic liquids exist in the soil environment? Effect of quaternary ammonium cations on glyphosate sorption,: mobility and toxicity in the selected herbicidal ionic liquids. J Mol Liq. 2023;370:120981. doi:10.1016/j.molliq.2022.120981
  • Wijntjes C, Weber Y, Höger S, et al. Decelerated degradation of a sulfonylurea herbicide in four fungicide-treated soils. Environ Sci Adv. 2022;1:70–82. doi:10.1039/D1VA00021G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.