275
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents in blood fingerprint application

, , &
Received 15 Jul 2023, Accepted 28 Jan 2024, Published online: 18 Jun 2024

References

  • Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5:47–58. doi:10.2478/v10102-012-0009-2
  • Abhinaya M, Parthiban R, Kumar PS, et al. A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. Environ Res. 2021;196:110996. doi:10.1016/j.envres.2021.110996
  • Kim HC, Jang TW, Chae HJ, et al. Evaluation and management of lead exposure. Ann Occup Environ Med. 2015;27:1–9. doi:10.1186/s40557-014-0044-x
  • Majumder AK, Nayeem A Al, Islam M, et al. Critical review of lead pollution In Bangladesh. J Health Pollut. 2021;11:1–21. doi:10.5696/2156-9614-11.31.210902
  • Giri DD, Alhazmi A, Mohammad A, et al. Lead removal from synthetic wastewater by biosorbents prepared from seeds of Artocarpus Heterophyllus and Syzygium Cumini. Chemosphere. 2022;287:132016. doi:10.1016/j.chemosphere.2021.132016
  • Ayub S, Changani F, Mohammadi AA, et al. Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. 2019;142: 293–299.
  • Liu T, Lawluvy Y, Shi Y, et al. Adsorption of cadmium and lead from aqueous solution using modified biochar: a review. J Environ Chem Eng. 2022;10:106502. doi:10.1016/j.jece.2021.106502
  • Kwikima MM, Mateso S, Chebude Y. Potentials of agricultural wastes as the ultimate alternative adsorbent for cadmium removal from wastewater. A review. Sci Afr. 2021;13:e00934.
  • Kinuthia GK, Ngure V, Beti D, et al. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports 2020;10:1–13.
  • Haddad MY, Alharbi HF. Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. J Appl Polym Sci. 2019;136:47209. doi:10.1002/app.47209
  • Ahmad R, Mirza A. Facile one pot green synthesis of Chitosan-Iron oxide (CS-Fe2O3) nanocomposite: Removal of Pb(II) and Cd(II) from synthetic and industrial wastewater. J Clean Prod. 2018;186:342–352. doi:10.1016/j.jclepro.2018.03.075
  • Sadeghi MM, Rad AS, Ardjmand M, et al. Preparation of magnetic nanocomposite based on polyaniline/Fe3O4 towards removal of lead (II) ions from real samples. Synth Met. 2018;245:1–9. doi:10.1016/j.synthmet.2018.08.001
  • Razzaz A, Ghorban S, Hosayni L, et al. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng. 2016;58:333–343. doi:10.1016/j.jtice.2015.06.003
  • Khezami L, Taha K, Amami E, et al. Removal of cadmium (II) from aqueous solution by zinc oxide nanoparticles: kinetic and thermodynamic studies. Desalin Water Treat. 2017;62:346–354. doi:10.5004/dwt.2017.0196
  • Khan SB, Rahman MM, Marwani HM, et al. An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium. 2013;8:1-8.
  • Xiao X, Yang L, Zhou D, et al. Magnetic γ-Fe2O3/Fe-doped hydroxyapatite nanostructures as high-efficiency cadmium adsorbents. Colloids Surf A Physicochem Eng Asp. 2018;555:548–557. doi:10.1016/j.colsurfa.2018.07.036
  • Sharma G, Naushad M. Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling. J Mol Liq. 2020;310:113025. doi:10.1016/j.molliq.2020.113025
  • Dong L, Zhu Z, Ma H, et al. Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. Journal of Environmental Sciences. 2010;22:225–229. doi:10.1016/S1001-0742(09)60097-8
  • Herrera-Barros A, Bitar-Castro N, Villabona-Ortíz Á, et al. Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustain Chem Pharm. 2020;17:100299. doi:10.1016/j.scp.2020.100299
  • Shehzad H, Ahmed E, Sharif A, et al. Modified alginate-chitosan-TiO2 composites for adsorptive removal of Ni(II) ions from aqueous medium. Int J Biol Macromol. 2022;194:117–127. doi:10.1016/j.ijbiomac.2021.11.140
  • Nassar NN. Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can J Chem Eng. 2012;90:1231–1238. doi:10.1002/cjce.20613
  • Zhao J, Liu J, Li N, et al. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study. Chem Eng J. 2016;304:737–746. doi:10.1016/j.cej.2016.07.003
  • Ren Y, Yan N, Wen Q, et al. Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J. 2011;175:1–7. doi:10.1016/j.cej.2010.08.010
  • Hemidouche S, Boudriche L, Boudjemaa A, et al. Removal of lead (II) and cadmium (II) cations from water using surface-modified graphene. Can J Chem Eng. 2017;95:508–515. doi:10.1002/cjce.22693
  • Agarwal A, Upadhyay U, Sreedhar I, et al. A review on valorization of biomass in heavy metal removal from wastewater. Journal of Water Process Engineering. 2020;38:101602. doi:10.1016/j.jwpe.2020.101602
  • Tabish TA, Memon FA, Gomez DE, et al. A facile synthesis of porous graphene for efficient water and wastewater treatment OPEN. 2018;8:1817.
  • Ibrahim WAW, Nodeh HR, Sanagi MM. Graphene-based materials as solid phase extraction sorbent for trace metal ions, Organic compounds, and biological Sample Preparation. 2016;46:267–283.
  • Narbaitz RM, Karimi-Jashni A. Electrochemical reactivation of granular activated carbon: impact of reactor configuration. Chem Eng J. 2012;197:414–423. doi:10.1016/j.cej.2012.05.049
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • Farghali AA, Abdel Tawab HA, Abdel Moaty SA, et al. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. J Nanostructure Chem. 2017;7:101–111. doi:10.1007/s40097-017-0227-4
  • Al-Khaldi FA, Abu-Sharkh B, Abulkibash AM, et al. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. New pub: Balaban. 2015;53:1417–1429.
  • Ma X, Yang ST, Tang H, et al. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. J Colloid Interface Sci. 2015;448:347–355. doi:10.1016/j.jcis.2015.02.042
  • Liang J, Liu J, Yuan X, et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal. 2015;273:101–110. doi:10.1016/j.cej.2015.03.069
  • Jun BM, Kim S, Kim Y, et al. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere. 2019;231:82–92. doi:10.1016/j.chemosphere.2019.05.076
  • Li Y, Xu Z, Liu S, et al. Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes. Comput Mater Sci. 2017;139:65–74. doi:10.1016/j.commatsci.2017.07.032
  • Cho HH, Wepasnick K, Smith BA, et al. Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: The relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir. 2010;26:967–981. doi:10.1021/la902440u
  • Alimohammady M, Jahangiri M, Kiani F, et al. A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd(II) removal from aqueous solutions. J Environ Chem Eng. 2017;5:3405–3417. doi:10.1016/j.jece.2017.06.045
  • Li B, Jin X, Lin J, et al. Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution. J Clean Prod. 2018;189:128–134. doi:10.1016/j.jclepro.2018.04.018
  • Adolph MA, Xavier YM, Kriveshini P, et al. Phosphine functionalised multiwalled carbon nanotubes: a new adsorbent for the removal of nickel from aqueous solution. J Environ Sci (China). 2012;24:1133–1141. doi:10.1016/S1001-0742(11)60880-2
  • Sharma R, Saini P. Graphene-based composites and hybrids for water purification applications. Diamond and carbon composites and nanocomposites. 2016;21:59.
  • Najafi F, Moradi O, Rajabi M, et al. Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J Mol Liq. 2015;208:106–113. doi:10.1016/j.molliq.2015.04.033
  • Nestle N, Kimmich R. Heavy metal uptake of alginate gels studied by NMR microscopy. Colloids Surf A Physicochem Eng Asp. 1996;115:141–147. doi:10.1016/0927-7757(96)03608-4
  • Raval NP, Shah PU, Shah NK. Adsorptive removal of nickel(II) ions from aqueous environment: a review. J Environ Manage. 2016;179:1–20. doi:10.1016/j.jenvman.2016.04.045
  • Alakhras F, Al-Shahrani H, Al-Abbad E, et al. Removal of Pb(II) metal ions from aqueous solutions using chitosan-vanillin derivatives of chelating polymers. 2019;28: 1523-1534.
  • Hussain MS, Musharraf SG, Bhanger MI, et al. Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. Int J Biol Macromol. 2020;147:643–652. doi:10.1016/j.ijbiomac.2020.01.091
  • Li Y, Guo C, Shi R, et al. Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Elsevier. 2019;
  • Mamah SC, Goh PS, Ismail AF, et al. Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Materials Science and Engineering: B. 2020;262:114725. doi:10.1016/j.mseb.2020.114725
  • Sabarish R, Unnikrishnan G. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym. 2018;199:129–140. doi:10.1016/j.carbpol.2018.06.123
  • Naeimi S, Faghihian H. Application of novel adsorbent prepared by mucor hiemalis biomass impregnated with calcium alginate for removal of sr2+ from aqueous solutions. J Polym Environ. 2019;27:1572–1583. doi:10.1007/s10924-019-01453-8
  • Badruddoza AZM, Shawon ZBZ, Tay WJD, et al. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym. 2013;91:322–332. doi:10.1016/j.carbpol.2012.08.030
  • Banivaheb S, Dan S, Hashemipour H, et al. Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal. J Saudi Chem Soc. 2021;25:101283. doi:10.1016/j.jscs.2021.101283
  • Kucuk AC, Urucu OA. Silsesquioxane-modified chitosan nanocomposite as a nanoadsorbent for the wastewater treatment. React Funct Polym. 2019;140:22–30. doi:10.1016/j.reactfunctpolym.2019.04.011
  • Tabatabaeefar A, Keshtkar AR, Talebi M, et al. Polyvinyl alcohol/alginate/zeolite nanohybrid for removal of metals. Chem Eng Technol. 2020;43:343–354. doi:10.1002/ceat.201900231
  • Wu J, Cheng X, Yang G. Preparation of nanochitin-contained magnetic chitosan microfibers via continuous injection gelation method for removal of Ni(II) ion from aqueous solution. Int J Biol Macromol. 2019;125:404–413. doi:10.1016/j.ijbiomac.2018.11.212
  • Futalan CM, Kan CC, Dalida ML, et al. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym. 2011;2:528–536. doi:10.1016/j.carbpol.2010.08.013
  • Abu-Saied MA, Wycisk R, Abbassy MM, et al. Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions-Fabrication and sorption studies. Carbohydr Polym. 2017;165:149–158. doi:10.1016/j.carbpol.2016.12.039
  • Lai GS, Lau WJ, Goh PS, et al. Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation. Chem Eng J. 2018;344:524–534. doi:10.1016/j.cej.2018.03.116
  • Zhang YJ, Xing ZJ, Duan ZK, et al. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Appl Surf Sci. 2014;315:279–286. doi:10.1016/j.apsusc.2014.07.126
  • Maciá-Agulló JA, Moore BC, Cazorla-Amorós D, et al. Activation of coal tar pitch carbon fibres: physical activation vs. chemical activation. Carbon N Y. 2004;42:1367–1370. doi:10.1016/j.carbon.2004.01.013
  • Kalderis D, Bethanis S, Paraskeva P, et al. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol. 2008;99:6809–6816. doi:10.1016/j.biortech.2008.01.041
  • Sajjadi SA, Meknati A, Lima EC, et al. A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption. J Environ Manage. 2019;236:34–44. doi:10.1016/j.jenvman.2019.01.087
  • Al-Onazi WA, Ali MHH, Al-Garni T. Using pomegranate peel and date pit activated carbon for the removal of cadmium and lead ions from aqueous solution. J Chem. 2021;2021:1-13. doi:10.1155/2021/5514118
  • Guo J, Song Y, Ji X, et al. Preparation and characterization of nanoporous activated carbon derived from prawn shell and its application for removal of heavy metal ions. Materials (Basel). 2019;12:241. doi:10.3390/ma12020241
  • Naeem MA, Imran M, Amjad M, et al. Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water. 2019;11:1438. doi:10.3390/w11071438
  • Wan Ibrahim WMH, Mohamad Amini MH, Sulaiman NS, et al. Powdered activated carbon prepared from Leucaena leucocephala biomass for cadmium removal in water purification process. 2019;26:30–40.
  • Tan IAW, Chan JC, Hameed BH, et al. Adsorption behavior of cadmium ions onto phosphoric acid-impregnated microwave-induced mesoporous activated carbon. Journal of Water Process Engineering. 2016;14:60–70. doi:10.1016/j.jwpe.2016.10.007
  • Dandajeh Adamu A, Begianpuye Adie D. Assessment of cadmium adsorption from wastewater onto sugarcane bagasse activated carbon. Bayero Journal of Engineering and Technology. 2020;15:7–14.
  • Khedri A, Jafari D, Esfandyari M. Adsorption of Nickel(II) ions from synthetic wastewater using activated carbon prepared from mespilus germanica leaf. Arab J Sci Eng. 2022;47:6155–6166. doi:10.1007/s13369-021-06014-7
  • Nnaji CC, Agim AE, Mama CN, et al. Equilibrium and thermodynamic investigation of biosorption of nickel from water by activated carbon made from palm kernel chaff. Sci Rep 2021;11:7808. doi:10.1038/s41598-021-86932-6
  • Anitha D, Ramadevi A, Seetharaman R. Biosorptive removal of Nickel(II) from aqueous solution by Mangosteen shell activated carbon. Mater Today Proc. 2021;45:718–722. doi:10.1016/j.matpr.2020.02.748
  • Tuomikoski S, Runtti H, Romar H, et al. Multiple heavy metal removal simultaneously by a biomass-based porous carbon. Water Environ Res. 2021;93:1303–1314. doi:10.1002/wer.1514
  • Air D, Menggunakan Kurma K, Bahan S, et al. Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review. Sains Malays. 2018;47:35–49. doi:10.17576/jsm-2018-4701-05
  • Tsade H, Murthy A, Muniswamy D. Bio-sorbents from agricultural wastes for eradication of heavy metals: a review. J Mater Environ Sci. 2020;2020:1719–1735.
  • Li X, Zhang D, Sheng F, et al. Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicol Environ Saf. 2018;147:357–366. doi:10.1016/j.ecoenv.2017.08.058
  • Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, et al. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment. Renew Energy. 2020;146:1031–1040. doi:10.1016/j.renene.2019.07.042
  • Tejada-Tovar C, Gonzalez-Delgado AD, Villabona-Ortiz A. Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences 2019;9:4486. doi:10.3390/app9214486
  • Çelebi H, Gök O. Evaluation of lead adsorption kinetics and isotherms from aqueous solution using natural walnut shell. Int J Environ Res. 2017;11:83–90. doi:10.1007/s41742-017-0009-3
  • Basu M, Guha AK, Ray L. Biosorptive removal of lead by lentil husk. J Environ Chem Eng. 2015;3:1088–1095. doi:10.1016/j.jece.2015.04.024
  • Gaur N, Kukreja A, Yadav M, et al. Adsorptive removal of lead and arsenic from aqueous solution using soya bean as a novel biosorbent: equilibrium isotherm and thermal stability studies. Appl Water Sci. 2018;8:1–12. doi:10.1007/s13201-017-0639-9
  • Afolabi FO, Musonge P, Bakare BF. Bio-sorption of copper and lead ions in single and binary systems onto banana peels. Cogent Engineering. 2021;8. 1886730. doi:10.1080/23311916.2021.1886730
  • Basu M, Guha AK, Ray L. Adsorption Behavior of Cadmium on Husk of Lentil. Process Saf Environ Prot. 2017;106:11–22. doi:10.1016/j.psep.2016.11.025
  • Abdolali A, Ngo HH, Guo W, et al. A breakthrough biosorbent in removing heavy metals: equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Sci Total Environ. 2016;542:603–611. doi:10.1016/j.scitotenv.2015.10.095
  • Gupta VK, Nayak A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J. 2012;180:81–90. doi:10.1016/j.cej.2011.11.006
  • Akunwa NK, Muhammad MN, Akunna JC. Treatment of metal-contaminated wastewater: a comparison of low-cost biosorbents. J Environ Manage. 2014;146:517–523. doi:10.1016/j.jenvman.2014.08.014
  • Kulkarni RM, Shetty KV, Srinikethan G. Biosorption study on Ni(II) and Cd(II) removal in a packed bed column using brewery sludge pellets. Biomass Convers Biorefin. 2022;1:1–12.
  • Loiacono S, Crini G, Chanet G, et al. Metals in aqueous solutions and real effluents: biosorption behavior of a hemp-based felt. J Chem Technol Biotechnol. 2018;93:2592–2601. doi:10.1002/jctb.5612
  • Chaudhari V, Patkar M. Removal of nickel from aqueous solution by using corncob as adsorbent. Mater Today Proc. 2022;61:307–314. doi:10.1016/j.matpr.2021.09.458
  • González-Rodríguez L, García JOP, Rodríguez-López L, et al. Cassava husk powder as an eco-friendly adsorbent for the removal of nickel (II) ions. Springer Proceedings in Earth and Environmental Sciences. 2022;21–38. doi:10.1007/978-3-030-88919-7_3
  • Al-Abbad EA, Al Dwairi RA. Removal of nickel (II) ions from water by Jordan natural zeolite as sorbent material. J Saudi Chem Soc. 2021;25:101233. doi:10.1016/j.jscs.2021.101233
  • Bao W wei, Zou H feng, Gan S cai, et al. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: kinetic and equilibrium studies. Chem Res Chin Univ. 2013;29:126–131. doi:10.1007/s40242-013-2139-2
  • Raval NP, Shah PU, Shah NK. Adsorptive removal of nickel(II) ions from aqueous environment: a review. J Environ Manage. 2016;179:1–20. doi:10.1016/j.jenvman.2016.04.045
  • Khan S, Idrees M, Bilal M. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions. Colloids Surf A Physicochem Eng Asp. 2021;623:126711. doi:10.1016/j.colsurfa.2021.126711
  • Meneguin JG, Moisés MP, Karchiyappan T, et al. Preparation and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions: Adsorption and thermodynamic modeling. Process Saf Environ Prot. 2017;111:244–252. doi:10.1016/j.psep.2017.07.005
  • Alfaro-Cuevas-Villanueva R, Hidalgo-Vázquez AR, Cortés Penagos CDJ, et al. Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Scientific World J. 2014;2014: 647512.
  • Kragović M, Daković A, Sekulić Ž, et al. Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite. Appl Surf Sci. 2012;258:3667–3673. doi:10.1016/j.apsusc.2011.12.002
  • Wang R, Ng DHL, Liu S. Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. J Hazard Mater. 2019;380:120826. doi:10.1016/j.jhazmat.2019.120826
  • Jiang D, Yang Y, Huang C, et al. Removal of the heavy metal ion nickel (II) via an adsorption method using flower globular magnesium hydroxide. J Hazard Mater. 2019;373:131–140. doi:10.1016/j.jhazmat.2019.01.096
  • Theerthagiri J, Salla S, Senthil RA, et al. A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology. 2019;30:392001. doi:10.1088/1361-6528/ab268a
  • Phothisarattana D, Wongphan P, Promhuad K, et al. Biodegradable Poly(Butylene Adipate-Co-Terephthalate) and Thermoplastic Starch-Blended TiO2 Nanocomposite Blown Films as Functional Active Packaging of Fresh Fruit. Polymers 2021, Vol 13, Page 4192. 2021;13:4192.
  • Souza VGL, Fernando AL. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag Shelf Life. 2016;8:63–70. doi:10.1016/j.fpsl.2016.04.001
  • Garcia C V., Shin GH, Kim JT. Metal oxide-based nanocomposites in food packaging: applications: migration, and regulations. Trends Food Sci Technol. 2018;82:21–31. doi:10.1016/j.tifs.2018.09.021
  • Struller CF, Kelly PJ, Copeland NJ. Aluminum oxide barrier coatings on polymer films for food packaging applications. Surf Coat Technol. 2014;241:130–137. doi:10.1016/j.surfcoat.2013.08.011
  • Hirvikorpi T, Vähä-Nissi M, Mustonen T, et al. Atomic layer deposited aluminum oxide barrier coatings for packaging materials. Thin Solid Films. 2010;518:2654–2658. doi:10.1016/j.tsf.2009.08.025
  • Lv W, Qiu Q, Wang F, et al. Sonochemical synthesis of cobalt aluminate nanoparticles under various preparation parameters. Ultrason Sonochem. 2010;17:793–801. doi:10.1016/j.ultsonch.2010.01.018
  • Thakur AK, Singh R, Teja Pullela R, et al. Green adsorbents for the removal of heavy metals from Wastewater: a review. Mater Today Proc. 2022;57:1468–1472. doi:10.1016/j.matpr.2021.11.373
  • Imran-Shaukat M, Wahi R, Ngaini Z. The application of agricultural wastes for heavy metals adsorption: a meta-analysis of recent studies. Bioresour Technol Rep. 2022;17:100902. doi:10.1016/j.biteb.2021.100902
  • Thakur V, Sharma E, Guleria A, et al. Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. Mater Today Proc. 2020;32:608–619. doi:10.1016/j.matpr.2020.02.756
  • Wang X, Li X, Liu G, et al. Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environ Sci Process Impacts. 2019;21:584–592. doi:10.1039/C8EM00457A
  • Sun J, Hui K, Guo Z, et al. Cellulose and lignin contents are negatively correlated with starch accumulation, and their correlation characteristics vary across cassava varieties. J Plant Growth Regul. 2023;42:658–669. doi:10.1007/s00344-022-10573-w
  • Cao D, Wang X, Pan L, et al. Nonmetal sulfur-doped coral-like cobalt ferrite nanoparticles with enhanced magnetic properties. J Mater Chem C Mater. 2016;4:951–957. doi:10.1039/C5TC02931G
  • Majedi A, Davar F, Abbasi A. Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem. 2014;20:4215–4223. doi:10.1016/j.jiec.2014.01.023
  • Zang Z, Temmyo J, Nakamura A. Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Optics Express. 2013;21:11448–11456. doi:10.1364/OE.21.011448
  • Wang X, Ahmad M, Sun H. Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials. 2017;10:1304.
  • Gupta SK, Mao Y. A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog Mater Sci. 2021;117:100734. doi:10.1016/j.pmatsci.2020.100734
  • Kolahalam LA, Kasi Viswanath IV., Diwakar BS, et al. Review on nanomaterials: synthesis and applications. Mater Today Proc. 2019;18:2182–2190.
  • Hyeon T, Su Seong Lee, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc. 2001;123:12798–12801. doi:10.1021/ja016812s
  • Kelly CHW, Lein M. Choosing the right precursor for thermal decomposition solution-phase synthesis of iron nanoparticles: tunable dissociation energies of ferrocene derivatives. Phys Chem Chem Phys. 2016;18:32448–32457. doi:10.1039/C6CP06921E
  • Kolodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials. 2014;7:2833–2881. doi:10.3390/ma7042833
  • Srivastava R. Synthesis and Characterization Techniques of Nanomaterials. Sage. 2012;4:17–27.
  • Naiya TK, Chowdhury P, Bhattacharya AK, et al. Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chem Eng J. 2009;148:68–79. doi:10.1016/j.cej.2008.08.002
  • Ahmaruzzaman M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci. 2011;166:36–59. doi:10.1016/j.cis.2011.04.005
  • Oliveira LC, Botero WG, Farias TS, et al. Application of natural organic residues as adsorbents to remove lead from waters. Water Air Soil Pollut. 2019;230:1–11. doi:10.1007/s11270-018-4051-3
  • Afroze S, Sen TK. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 2018;229:1–50. doi:10.1007/s11270-018-3869-z
  • Kumar J, Balomajumder C, Mondal P. Application of agro-based biomasses for zinc removal from wastewater – a review. Clean (Weinh). 2011;39:641–652.
  • Fernández-López JA, Angosto JM, Roca MJ, et al. Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Sci Total Environ. 2019;653:55–63. doi:10.1016/j.scitotenv.2018.10.343
  • Anantha RK, Kota S. An evaluation of the major factors influencing the removal of copper ions using the egg shell (Dromaius novaehollandiae): chitosan (Agaricus bisporus) composite. 3 Biotech. 2016;6:1–16.
  • SenthilKumar P, Ramalingam S, Sathyaselvabala V, et al. Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination. 2011;266:63–71. doi:10.1016/j.desal.2010.08.003
  • Taşar Ş,: Kaya F, Özer A. Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng. 2014;2:1018–1026. doi:10.1016/j.jece.2014.03.015
  • Witek-Krowiak A, Szafran RG, Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination. 2011;265:126–134. doi:10.1016/j.desal.2010.07.042
  • Al-Anber ZA, Matouq MAD. Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J Hazard Mater. 2008;151:194–201. doi:10.1016/j.jhazmat.2007.05.069
  • Joseph L, Jun BM, Flora JRV, et al. Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere. 2019;229:142–159. doi:10.1016/j.chemosphere.2019.04.198
  • Rial JB, Ferreira ML. Potential applications of spent adsorbents and catalysts: re-valorization of waste. Science of The Total Environment. 2022;823:153370. doi:10.1016/j.scitotenv.2022.153370
  • Ruffolo SA, La Russa MF, Malagodi M, et al. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process. 2010;100:829–834. doi:10.1007/s00339-010-5658-4
  • Azizi-Lalabadi M, Hashemi H, Feng J, et al. Carbon nanomaterials against pathogens: the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci. 2020;284:102250. doi:10.1016/j.cis.2020.102250
  • Peng Z, Liu X, Zhang W, et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int. 2020;134:105298. doi:10.1016/j.envint.2019.105298
  • Ali NS, Kalash KR, Ahmed AN, et al. Performance of a solar photocatalysis reactor as pretreatment for wastewater via UV, UV/TiO2, and UV/H2O2 to control membrane fouling. Sci Rep. 2022; 12:1.
  • Mattson P, Bilous P. Coomassie brilliant blue: an excellent reagent for the enhancement of faint bloody fingerprints. Canadian Society of Forensic Science Journal. 2014;47:20–36. doi:10.1080/00085030.2014.885728
  • Patil V, Ingle DR. An association between fingerprint patterns with blood group and lifestyle based diseases: a review. Artif Intell Rev. 2021;54:1803–1839. doi:10.1007/s10462-020-09891-w
  • Patil V, Ingle DR. An association between fingerprint patterns with blood group and lifestyle based diseases: a review. Artif Intell Rev. 2021;54:1803–1839. doi:10.1007/s10462-020-09891-w
  • Qiu Z, Hao B, Gu X, et al. A general powder dusting method for latent fingerprint development based on AIEgens. Sci China Chem. 2018;61:966–970. doi:10.1007/s11426-018-9280-1
  • Zhao Y Bin, Ma YJ, Song D, et al. New luminescent nanoparticles based on carbon dots/SiO2 for the detection of latent fingermarks. Analytical Methods. 2017;9:4770–4775. doi:10.1039/C7AY01316G
  • Becue A, Moret S, Champod C, et al. Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic Sci Int. 2009;191:36–41. doi:10.1016/j.forsciint.2009.06.005
  • Wang M, Li M, Yu A, et al. Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Adv Funct Mater. 2017;27:1606243. doi:10.1002/adfm.201606243
  • James SH, Kish PE, Sutton TP. Principles of Bloodstain Pattern Analysis : Theory and Practice. Principles of Bloodstain Pattern Analysis. 2005: 576. doi:10.1201/9781420039467