88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous removal of ammonium, phosphate, and phenol via self-assembled biochar composites CBCZrOFe3O4 and its utilization as soil acidity amelioration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Received 19 Mar 2024, Accepted 19 May 2024, Published online: 10 Jun 2024

References

  • Jing HP, Li Y, Wang X, et al. Simultaneous recovery of phosphate, ammonium and humic acid from wastewater using a biochar supported Mg(OH)2/bentonite composite. Environ Sci (Camb). 2019;5:931–943. doi:10.1039/c8ew00952j
  • Nancharaiah YV, Venkata Mohan S, Lens PNL. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol. 2016;215:173–185. doi:10.1016/j.biortech.2016.03.129
  • Chen M, Ding S, Chen X, et al. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Res. 2018;133:153–164. doi:10.1016/j.watres.2018.01.040
  • Pawar RR, Gupta P, Lalhmunsiama, et al. Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate. Sci Total Environ. 2016;572:1222–1230. doi:10.1016/j.scitotenv.2016.08.040
  • Nguyen TTN, Némery J, Gratiot N, et al. Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon – Dongnai (southern Vietnam). Sci Total Environ. 2019;653:370–383. doi:10.1016/j.scitotenv.2018.10.319
  • Kim YM, Park D, Lee DS, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater. 2008;152:915–921. doi:10.1016/j.jhazmat.2007.07.065
  • Abdelwahab O, Amin NK. Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm and thermodynamic studies. Egypt J Aquat Res. 2013;39:215–223. doi:10.1016/j.ejar.2013.12.011
  • Al Bsoul A, Hailat M, Abdelhay A, et al. Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent. Sci Total Environ. 2021;761: 143229. doi:10.1016/j.scitotenv.2020.143229.
  • Kraus TEC, Dahlgren RA, Zasoski RJ. Tannins in nutrient dynamics of forest ecosystems - a review. Plant Soil. 2003;256:41–66. doi:10.1023/A:1026206511084
  • Shakoor MB, Ye Z-L, Chen S. Engineered biochars for recovering phosphate and ammonium from wastewater: a review. Sci Total Environ. 2021;779:146240. doi:10.1016/j.scitotenv.2021.146240
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev. 2013;19:360–369. doi:10.1016/j.rser.2012.11.030
  • Chen Y, Gao Y, Ng CWW, et al. Bio-improved hydraulic properties of sand treated by soybean urease induced carbonate precipitation and its application part 1: water retention ability. Transport Geotech. 2021;27:100489. doi:10.1016/j.trgeo.2020.100489
  • González-Morales C, Fernández B, Molina FJ, et al. Influence of pH and temperature on struvite purity and recovery from anaerobic digestate. Sustainability. 2021;13:10730. doi:10.3390/su131910730
  • Zhou X, Chen Y. An integrated process for struvite electrochemical precipitation and ammonia oxidation of sludge alkaline hydrolysis supernatant. Environ Sci Pollut Res. 2019;26:2435–2444. doi:10.1007/s11356-018-3667-6
  • Wang F, Wei J, Zou X, et al. Enhanced electrochemical phosphate recovery from livestock wastewater by adjusting pH with plant ash. J Environ Manage. 2019;250: 109473. doi:10.1016/j.jenvman.2019.109473.
  • Wang Z, He Z. Electrochemical phosphorus leaching from digested anaerobic sludge and subsequent nutrient recovery. Water Res. 2022;223:118996. doi:10.1016/j.watres.2022.118996
  • Tarpeh WA, Wald I, Wiprächtiger M, et al. Effects of operating and design parameters on ion exchange columns for nutrient recovery from urine. Environ Sci (Camb). 2018;4:828–838. doi:10.1039/C7EW00478H
  • Harada H, Hidayat E, Uemoto S, et al. Extraction of phosphorous from thermally treated sludge and separation of aluminum by adsorption. J Mater Cycles Waste Manag. 2021;23:2112–2119. doi:10.1007/s10163-021-01273-w
  • Wang Y, Chen H, Liu YX, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater. Bioresour Technol. 2016;211:711–719. doi:10.1016/j.biortech.2016.03.149
  • Xie B, Qin J, Wang S, et al. Adsorption of phenol on commercial activated carbons: modelling and interpretation. Int J Environ Res Public Health. 2020;17(3). 789. doi:10.3390/ijerph17030789.
  • Matei A, Racoviteanu G. Review of the technologies for nitrates removal from water intended for human consumption. IOP Conf Ser Earth Environ Sci. 2021;664:012024. doi:10.1088/1755-1315/664/1/012024
  • Huang W, Zhang Y, Li D. Adsorptive removal of phosphate from water using mesoporous materials: A review. J Environ Manage. 2017;193:470–482. doi:10.1016/j.jenvman.2017.02.030
  • Rodrigues LA, da Silva MLCP. An investigation of phosphate adsorption from aqueous solution onto hydrous niobium oxide prepared by co-precipitation method. Colloids Surf A Physicochem Eng Asp. 2009;334:191–196. doi:10.1016/j.colsurfa.2008.10.023
  • Blaney L, Cinar S, Sengupta A. Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 2007;41:1603–1613. doi:10.1016/j.watres.2007.01.008
  • Srivatsav P, Bhargav BS, Shanmugasundaram V, et al. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: a review. Water (Switzerland). 2020;12(12). 3561. doi:10.3390/w12123561.
  • Chatterjee R, Sajjadi B, Chen WY, et al. Effect of pyrolysis temperature on PhysicoChemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Front Energy Res. 2020;8. doi:10.3389/fenrg.2020.00085
  • Lita AL, Hidayat E, Mohamad Sarbani NM, et al. Glyphosate removal from water using biochar based coffee husk loaded Fe3O4. Water (Basel). 2023;15:2945. doi:10.3390/w15162945
  • Suliman W, Harsh JB, Abu-Lail NI, et al. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ. 2017;574:139–147. doi:10.1016/j.scitotenv.2016.09.025
  • Hu X, Zhang X, Ngo HH, et al. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci Total Environ. 2020;707:135544. doi:10.1016/j.scitotenv.2019.135544
  • Begum SA, Golam Hyder AHM, Hicklen Q, et al. Adsorption characteristics of ammonium onto biochar from an aqueous solution. J Water Supply Res Technol Aqua. 2021;70:113–122. doi:10.2166/aqua.2020.062
  • Emenike EC, Ogunniyi S, Ighalo JO, et al. Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresour Technol Rep. 2022;19:101195. doi:10.1016/j.biteb.2022.101195
  • Lawal AA, Hassan MA, Ahmad Farid MA, et al. Adsorption mechanism and effectiveness of phenol and tannic acid removal by biochar produced from oil palm frond using steam pyrolysis. Environ Pollut. 2021;269:116197. doi:10.1016/j.envpol.2020.116197
  • Silveira Junior EG, Perez VH, de Paula SCSE, et al. Coffee husks valorization for levoglucosan production and other pyrolytic products through thermochemical conversion by fast pyrolysis. Energies (Basel). 2023;16(6). 2835. doi:10.3390/en16062835.
  • Hidayat E, Afriliana A, Gusmini G, et al. Evaluate of coffee husk compost. Int J Food Agricult Nat Resour. 2020;1:37–43. doi:10.46676/ij-fanres.v1i1.8
  • Wu P, Wang Z, Wang H, et al. Visualizing the emerging trends of biochar research and applications in 2019: a scientometric analysis and review. Biochar. 2020;2:135–150. doi:10.1007/s42773-020-00055-1
  • Li W, Zhang L, Hu D, et al. A mesoporous nanocellulose/sodium alginate/carboxymethyl-chitosan gel beads for efficient adsorption of Cu2+ and Pb2+. Int J Biol Macromol. 2021;187:922–930. doi:10.1016/j.ijbiomac.2021.07.181
  • Aranaz I, Alcántara AR, Civera MC, et al. Chitosan: an overview of its properties and applications. Polymers (Basel). 2021;13:3256. doi:10.3390/polym13193256
  • Nga NK, Thuy Chau NT, Viet PH. Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J Sci Adv Mater Dev. 2020;5:65–72. doi:10.1016/j.jsamd.2020.01.009
  • Spoială A, Ilie CI, Dolete G, et al. Preparation and characterization of chitosan/TiO2 composite membranes as adsorbent materials for water purification. Membranes (Basel). 2022;12(8). 804. doi:10.3390/membranes12080804.
  • Cordova Estrada AK, Cordova Lozano F, Lara Díaz RA. Thermodynamics and kinetic studies for the adsorption process of methyl orange by magnetic activated carbons. Air. Soil Water Res. 2021;14. doi:10.1177/11786221211013336
  • Wang P, Shen T, Li X, et al. Magnetic mesoporous calcium carbonate-based nanocomposites for the removal of toxic Pb(II) and Cd(II) ions from water. ACS Appl Nano Mater. 2020;3:1272–1281. doi:10.1021/acsanm.9b02036
  • Fu Z, Li H, Yang L, et al. Magnetic polar post-cross-linked resin and its adsorption towards salicylic acid from aqueous solution. Chem Eng J. 2015;273:240–246. doi:10.1016/j.cej.2015.03.005
  • Zhao Y, Shi H, Du Z, et al. Removal of As(V) from aqueous solution using modified Fe3O4 nanoparticles. R Soc Open Sci. 2023;10: 220988. doi:10.1098/rsos.220988.
  • Zhang L, Lou S, Hao X, et al. Highly-porous and excellent-capacity zirconium-chitosan composite with superior Sb(III)/Sb(V) removal performance. Sep Purif Technol. 2022;303:122253. doi:10.1016/j.seppur.2022.122253
  • Jawad AH, Hameed BH, Abdulhameed AS. Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: solo and collective parametric optimization. Polym Bull. 2023;80:4927–4947. doi:10.1007/s00289-022-04294-z
  • Min K, Freeman C, Kang H, et al. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. Biomed Res Int. 2015;2015:1–11. doi:10.1155/2015/825098
  • Geng N, Kang X, Yan X, et al. Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature. Ecotoxicol Environ Saf. 2022;232:113241. doi:10.1016/j.ecoenv.2022.113241
  • Driscoll CT, Driscoll KM, Fakhraei H, et al. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmos Environ. 2016;146:5–14. doi:10.1016/j.atmosenv.2016.08.034
  • Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10: 024019. doi:10.1088/1748-9326/10/2/024019.
  • Fidel RB, Laird DA, Thompson ML, et al. Characterization and quantification of biochar alkalinity. Chemosphere. 2017;167:367–373. doi:10.1016/j.chemosphere.2016.09.151
  • Kreslavski VD, Shmarev AN, Ivanov AA, et al. Effects of iron oxide nanoparticles (Fe3O4) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum). Funct Plant Biol. 2023;50:932–940. doi:10.1071/FP23085
  • Liu L, Sun P, Chen Y, et al. Distinct chromium removal mechanisms by iron-modified biochar under varying pH: role of iron and chromium speciation. Chemosphere. 2023;331:138796. doi:10.1016/j.chemosphere.2023.138796
  • Hättenschwiler S, Vitousek PM. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol. 2000;15:238–243. doi:10.1016/S0169-5347(00)01861-9
  • Misra D, Dutta W, Jha G, et al. Interactions and regulatory functions of phenolics in soil-plant-climate nexus. Agronomy. 2023;13:280. doi:10.3390/agronomy13020280
  • Hidayat E, Sarbani NMM, Lahiri SK, et al. Effects of sodium alginate-poly(acrylic acid) cross-linked hydrogel beads on soil conditioner in the absence and presence of phosphate and carbonate ions. Case Stud Chem Environ Eng. 2024;9:100642. doi:10.1016/j.cscee.2024.100642
  • Allahkarami E, Dehghan Monfared A, Silva LFO, et al. Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Sci Rep. 2023;13: 167. doi:10.1038/s41598-023-27507-5.
  • Modrzejewska Z. Sorption mechanism of copper in chitosan hydrogel. React Funct Polym. 2013;73:719–729. doi:10.1016/j.reactfunctpolym.2013.02.014
  • Zheng Q, Yang L, Song D, et al. High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil. Chemosphere. 2020;259:127469. doi:10.1016/j.chemosphere.2020.127469
  • Qurrat-Ul-Ain, Khatoon J, Shah MR, et al. Convenient pH-responsive removal of acid black 1 by green l-histidine/iron oxide magnetic nanoadsorbent from water: performance and mechanistic studies. RSC Adv. 2019;9:2978–2996. doi:10.1039/c8ra09279f
  • Ravikumar N, Gaddamanugu G, Anand Solomon K. Structural, spectroscopic (FT-IR, FT-Raman) and theoretical studies of the 1:1 cocrystal of isoniazid with p-coumaric acid. J Mol Struct. 2013;1033:272–279. doi:10.1016/j.molstruc.2012.10.029
  • Azizi A. Green synthesis of Fe3O4 nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposite: a suitable proposal for drug delivery systems. J Inorg Organomet Polym Mater. 2020;30:3552–3561. doi:10.1007/s10904-020-01500-1
  • Zhang M, Zhang Z, Peng Y, et al. Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int J Biol Macromol. 2020;156:289–301. doi:10.1016/j.ijbiomac.2020.04.020
  • Abdellaoui Y, Abou Oualid H, Hsini A, et al. Synthesis of zirconium-modified merlinoite from fly ash for enhanced removal of phosphate in aqueous medium: experimental studies supported by Monte Carlo/SA simulations. Chem Eng J. 2021;404:126600. doi:10.1016/j.cej.2020.126600
  • Li R, Wang JJ, Zhou B, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment. J Clean Prod. 2017;147:96–107. doi:10.1016/j.jclepro.2017.01.069
  • Liu R, Yang Z, Wang G, et al. Simultaneous removal of ammonium and phosphate in aqueous solution using Chinese herbal medicine residues: mechanism and practical performance. J Clean Prod. 2021;313. doi:10.1016/j.jclepro.2021.127945
  • Gundogdu A, Duran C, Senturk HB, et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium,: kinetic, and thermodynamic study. J Chem Eng Data. 2012;57:2733–2743. doi:10.1021/je300597u
  • Tomin O, Yazdani MR. Production and characterization of porous magnetic biochar: before and after phosphate adsorption insights. J Porous Mater. 2022;29:849–859. doi:10.1007/s10934-022-01217-1
  • Mohamad Sarbani NM, Hidayat E, Naito K, et al. Cr (VI) and Pb (II) removal using crosslinking magnetite-carboxymethyl cellulose-chitosan hydrogel beads. Gels. 2023;9:612. doi:10.3390/gels9080612
  • Ozudogru Y, Tekne E. Adsorption of methylene blue from aqueous solution using spent coffee/chitosan composite. J Water Chem Technol. 2023;45:234–245. doi:10.3103/s1063455×23030086
  • Bechtaoui N, Rabiu MK, Raklami A, et al. Phosphate-dependent regulation of growth and stresses management in plants. Front Plant Sci. 2021;12. doi:10.3389/fpls.2021.679916
  • Domingues RR, Sánchez-Monedero MA, Spokas KA, et al. Enhancing cation exchange capacity of weathered soils using biochar: feedstock, pyrolysis conditions and addition rate. Agronomy. 2020;10:824. doi:10.3390/agronomy10060824
  • Jiang X, Xin X, Li S, et al. Effects of Fe oxide on N transformations in subtropical acid soils. Sci Rep. 2015;5:8615. doi:10.1038/srep08615
  • Slimani I, Doane T, Zhu-Barker X, et al. Iron-organic carbon coprecipitates reduce nitrification by restricting molybdenum in agricultural soils. Front Mater. 2024;11. doi:10.3389/fmats.2024.1346112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.