37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Remediation of oil-polluted soil using anionic and non-ionic composite biosurfactants

, , , , , & ORCID Icon show all
Received 18 Feb 2024, Accepted 02 Jun 2024, Published online: 14 Jun 2024

References

  • Zhang H, Han X, Wang G, et al. Hydrogeochemical and isotopic evidences of the underlying produced water intrusion into shallow groundwater in an oil production area, Northwest China. Sci Total Environ; 2024;916:170242. doi:10.1016/j.scitotenv.2024.170242.
  • Parus A, Ciesielski T, Woźniak-Karczewska M, et al. Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons – a critical evaluation of the performance of rhamnolipids. J Hazard Mater. 2023;443:130171. doi:10.1016/j.jhazmat.2022.130171
  • Gong L, Liao G, Luan H, et al. Oil solubilization in sodium dodecylbenzenesulfonate micelles: New insights into surfactant enhanced oil recovery. J Colloid Interface Sci. 2020;569:219–228. doi:10.1016/j.jcis.2020.02.083
  • Thirumurugan D, Kokila D, Balaji T, et al. Impact of biosurfactant produced by Bacillus spp. on biodegradation efficiency of crude oil and anthracene. Chemosphere. 2023;344:140340. doi:10.1016/j.chemosphere.2023.140340
  • Chebbi A, Hentati D, Zaghden H, et al. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int Biodeterior Biodegrad. 2017;122:128–140. doi:10.1016/j.ibiod.2017.05.006
  • Patowary R, Patowary K, Kalita MC, et al. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. Int. Biodeterior. Biodegradation. 2018;129:50–60. doi:10.1016/j.ibiod.2018.01.004
  • Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol. 2019;126(1):2–13. doi:10.1111/jam.14057
  • Gaur VK, Sharma P, Sirohi R, et al. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour Technol. 2022;343:126059. doi:10.1016/j.biortech.2021.126059
  • Freitas AR, Ribeiro AJ, Santos PS, et al. Emerging applications of Sterculia striata gum in medical, pharmaceutical, and environmental fields: Prospects and challenges. Eur Polym J; 2024;206:112799. doi:10.1016/j.eurpolymj.2024.112799.
  • Nasiri J, Motamedi E, Naghavi MR, et al. Removal of crystal violet from water using β-cyclodextrin functionalized biogenic zero-valent iron nanoadsorbents synthesized via aqueous root extracts of Ferula persica. J Hazard Mater. 2019;367:325–338. doi:10.1016/j.jhazmat.2018.12.079
  • Madrid F, Ballesteros R, Lacorte S, et al. Extraction of PAHS from an aged creosote-polluted soil by cyclodextrins and rhamnolipids. Side effects on removal and availability of potentially toxic elements. Sci Total Environ. 2019;653:384–392. doi:10.1016/j.scitotenv.2018.10.316
  • Feddersen RL, Thorp SN. Sodium carboxymethylcellulose. In: Whistler RL, Bemiller JN, editors. Industrial gums: polysaccharides and their derivatives. 3rd ed. San Diego: Elsevier; 1993. p. 537–578.
  • Li G, Shan Y, Nie W, et al. Application of carboxymethyl cellulose sodium (CMC Na) in maize–wheat cropping system (MWCS) in coastal saline-alkali soil. Sci Total Environ. 2024;912:169214. doi:10.1016/j.scitotenv.2023.169214
  • Zhou Y, Jin Q, Zhu T, et al. Adsorption of chromium (VI) from aqueous solutions by cellulose modified with β-CD and quaternary ammonium groups. J. Hazard. Mater. 2011;187(1-3):303–310. doi:10.1016/j.jhazmat.2011.01.025
  • Clint JH. Micellization of mixed nonionic surface active agents. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases. 1975;71:1327–1334. doi:10.1039/f19757101327
  • Holland P, Rubingh D. Nonideal multicomponent mixed micelle model. J Phys Chem. 1983;87(11):1984–1990. doi:10.1021/j100234a030
  • Rao KJ, Paria S. Solubilization of naphthalene in the presence of plant− synthetic mixed surfactant systems. J Phys Chem B. 2009;113(2):474–481.
  • Sheikh MS, Dar AA. Synergistic interaction of Gemini surfactant pentanediyl-1,5-bis(dimethylcetylammonium bromide) with conventional (ionic and nonionic) surfactants and its impact on the solubilization. Colloids Surf A Physicochem Eng Aspects. 2011;378(1-3):60–66. doi:10.1016/j.colsurfa.2011.01.057
  • Mittal KL. Solution chemistry of surfactants: Volume 1. New York: Springer Science & Business Media; 2012.
  • Mahbub S, Rub MA, Hoque MA, et al. Mixed micellization study of dodecyltrimethylammonium chloride and cetyltrimethylammonium bromide mixture in aqueous/urea medium at different temperatures: Theoretical and experimental view. J Phys Org Chem. 2018;31(12):e3872. doi:10.1002/poc.3872
  • Rodenas E, Valiente M, del S, et al. Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J Phys Chem B. 1999;103(21):4549–4554. doi:10.1021/jp981871m
  • Azum N, Kumar D. Kinetic study of the metal-dipeptide complex with ninhydrin facilitated by gemini (m-s-m) surfactant micelles. Sci Rep. 2020;10(1):4088. doi:10.1038/s41598-020-61001-6
  • Yang XH, Zhu WL. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose. 2007;14:409–417. doi:10.1007/s10570-007-9137-9
  • Lee EM, Koopal LK. Adsorption of cationic and anionic surfactants on metal oxide surfaces: surface charge adjustment and competition effects. J Colloid Interface Sci. 1996;177(2):478–489. doi:10.1006/jcis.1996.0061
  • Paria S, Khilar KC. A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci. 2004;110(3):75–95. doi:10.1016/j.cis.2004.03.001
  • Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. Hoboken: Wiley; 2012.
  • Huang Z, Wang D, Ayele BA, et al. Enhancement of auxiliary agent for washing efficiency of diesel contaminated soil with surfactants. Chemosphere. 2020;252:126494. doi:10.1016/j.chemosphere.2020.126494
  • Wei J, Huang G, Yu H, et al. Efficiency of single and mixed Gemini/conventional micelles on solubilization of phenanthrene. Chem Eng J. 2011;168(1):201–207. doi:10.1016/j.cej.2010.12.063
  • Wei J, Huang G, Zhu L, et al. Enhanced aqueous solubility of naphthalene and pyrene by binary and ternary Gemini cationic and conventional nonionic surfactants. Chemosphere. 2012;89(11):1347–1353. doi:10.1016/j.chemosphere.2012.05.091
  • Hanamertani AS, Pilus RM, Idris AK, et al. Ionic liquids as a potential additive for reducing surfactant adsorption onto crushed Berea sandstone. J Petrol Sci Eng. 2018;162:480–490. doi:10.1016/j.petrol.2017.09.077
  • Daaou M, Bendedouch D. Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J Saudi Chem Soc. 2012;16(3):333–337. doi:10.1016/j.jscs.2011.05.015
  • Li S, Sun Y, Hu X, et al. Elution effects of surfactants on petroleum contaminants in soil. Soils. 2016;48(3):516–522.
  • Mirzaee E, Sartaj M. The application of surfactant-enhanced soil washing process combined with adsorption using a recoverable magnetic granular activated carbon for remediation of PAH-contaminated soil. Environ Adv. 2022;9:100274. doi:10.1016/j.envadv.2022.100274
  • Ye Z, Zhang F, Han L, et al. The effect of temperature on the interfacial tension between crude oil and gemini surfactant solution. Colloids Surf A Physicochem Eng Aspects. 2008;322(1-3):138–141. doi:10.1016/j.colsurfa.2008.02.043
  • Liu J-W, Wei K-H, Xu S-W, et al. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Sci Total Environ. 2021;756:144142. doi:10.1016/j.scitotenv.2020.144142
  • Peng S, Wu W, Chen J. Removal of PAHs with surfactant-enhanced soil washing: influencing factors and removal effectiveness. Chemosphere. 2011;82(8):1173–1177. doi:10.1016/j.chemosphere.2010.11.076
  • Lai C-C, Huang Y-C, Wei Y-H, et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater. 2009;167(1-3):609–614. doi:10.1016/j.jhazmat.2009.01.017
  • Ren H, Zhou S, Wang B, et al. Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant. Colloids Surf A Physicochem Eng Aspects. 2020;585:124117. doi:10.1016/j.colsurfa.2019.124117
  • Ahmadi M, Chen Z. Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: application to asphaltene dispersion. Symmetry (Basel). 2020;12(11):1767. doi:10.3390/sym12111767
  • Ahmadi M, Chen Z. Comprehensive molecular scale modeling of anionic surfactant-asphaltene interactions. Fuel. 2021;288:119729. doi:10.1016/j.fuel.2020.119729
  • Kuppusamy S, Maddela NR, Megharaj M, et al. An overview of total petroleum hydrocarbons. In: Kuppusamy S, Maddela NR, Megharaj M, et al., editors. Total petroleum hydrocarbons: environmental fate, toxicity, and remediation. Cham: Springer; 2020. p. 1–27.
  • Wu G, He L, Chen D. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: molecular dynamic simulation. Chemosphere. 2013;92(11):1465–1471. doi:10.1016/j.chemosphere.2013.03.057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.