53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving bio-conditioning dewatering performance of food waste anaerobic digestate at low ambient temperatures by heating treatment

, , , , , , , , & show all
Received 04 Apr 2024, Accepted 03 Jun 2024, Published online: 19 Jun 2024

References

  • Iqbal A, Zan F, Liu X, et al. Net zero greenhouse emissions and energy recovery from food waste: manifestation from modelling a city-wide food waste management plan. Water Res. 2023;244:120481. doi:10.1016/j.watres.2023.120481
  • UNEP. United Nations Environment Programme. Food Waste Index Report 2021. Nairobi, Kenya.
  • Liu J, Jia H, Xu Z, et al. An impressive pristine biochar from food waste digestate for arsenic(V) removal from water: performance, optimization, and mechanism. Bioresour Technol. 2023;387:129586. doi:10.1016/j.biortech.2023.129586
  • Tian H, Yan M, Zhou J, et al. A closed loop case study of decentralized food waste management: system performance and life cycle carbon emission assessment. Sci Total Environ. 2023;899:165783. doi:10.1016/j.scitotenv.2023.165783
  • Wang N, Bai X, Huang D, et al. Impacts of digestate-based compost on soil property and nutrient availability. Environ Res. 2023;234:116551. doi:10.1016/j.envres.2023.116551
  • Mickan BS, Ren AT, Buhlmann CH, et al. Closing the circle for urban food waste anaerobic digestion: the use of digestate and biochar on plant growth in potting soil. J Clean Prod. 2022;347:131071. doi:10.1016/j.jclepro.2022.131071
  • Park C, Lee N, Kim J, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environ Pollut. 2021;270:116045. doi:10.1016/j.envpol.2020.116045
  • Chen T, Qiu X, Feng H, et al. Solid digestate disposal strategies to reduce the environmental impact and energy consumption of food waste-based biogas systems. Bioresour Technol. 2021;325:124706. doi:10.1016/j.biortech.2021.124706
  • Chang S, Zhang Z, Cao L, et al. Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: effect of temperature. Energy Convers Manage. 2020;213:112798. doi:10.1016/j.enconman.2020.112798
  • Lamolinara B, Perez-Martinez A, Guardado-Yordi E, et al. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manage. 2022;140:14–30. doi:10.1016/j.wasman.2021.12.035
  • O’Connor J, Mickan BS, Gurung SK, et al. Enhancing nutrient recovery from food waste anaerobic digestate. Bioresour Technol. 2023;390:129869. doi:10.1016/j.biortech.2023.129869
  • U.S. EPA. Anaerobic digestion facilities processing food waste in the United States (2019); 2023.
  • Peng W, Zhang H, Lü F, et al. Char derived from food waste based solid digestate for phosphate adsorption. J Clean Prod. 2021;297:126687. doi:10.1016/j.jclepro.2021.126687
  • Jin C, Sun S, Yang D, et al. Anaerobic digestion: an alternative resource treatment option for food waste in China. Sci Total Environ. 2021;779:146397. doi:10.1016/j.scitotenv.2021.146397
  • Dutta S, He M, Xiong X, et al. Sustainable management and recycling of food waste anaerobic digestate: a review. Bioresour Technol. 2021;341:125915. doi:10.1016/j.biortech.2021.125915
  • Zhang M, Wang X, Zhang D, et al. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor. Bioresour Technol. 2022;349:126855. doi:10.1016/j.biortech.2022.126855
  • Zhou B, Wang D, Yan C, et al. A novel approach for purifying food waste anaerobic digestate through bio-conditioning dewatering followed by activated sludge process: a case study. Environ Pollut. 2024;346:123644. doi:10.1016/j.envpol.2024.123644
  • Cheong JC, Lee JTE, Lim JW, et al. Closing the food waste loop: food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao Bai cai (Brassica rapa). Sci Total Environ. 2020;715:136789. doi:10.1016/j.scitotenv.2020.136789
  • Chuka-ogwude D, Ogbonna J, Moheimani NR. A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Res. 2020;47:101841. doi:10.1016/j.algal.2020.101841
  • Wang Y, Fang J, Lü F, et al. Food waste anaerobic digestion plants: underestimated air pollutants and control strategy. Sci Total Environ. 2023;903:166143. doi:10.1016/j.scitotenv.2023.166143
  • Peng W, Pivato A. Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valorization. 2019;10(2):465–481. doi:10.1007/s12649-017-0071-2
  • Zhao J, Wang Z, Li J, et al. Pyrolysis of food waste and food waste solid digestate: a comparative investigation. Bioresour Technol. 2022;354:127191. doi:10.1016/j.biortech.2022.127191
  • Zhang C, Shao M, Wu H, et al. Management and valorization of digestate from food waste via hydrothermal. Resour Conserv Recycl. 2021;171:105639. doi:10.1016/j.resconrec.2021.105639
  • Wang X, Wang W, Zhou B, et al. Improving solid-liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation. J Hazard Mater. 2020;398:122989. doi:10.1016/j.jhazmat.2020.122989
  • Huang Y, Yu L, Wang R, et al. Pilot study of intense dewatering of urban sewage sludge. J Mater Cycles Waste Manag. 2015;19(1):88–101. doi:10.1007/s10163-015-0387-6
  • Rao B, Huang G, Lu X, et al. An ultrahigh-pressure filtration and device design and optimiz study on high dry dewatering of sludge. Process Saf Environ. Protect. 2017;106:129–137. doi:10.1016/j.psep.2017.01.001
  • Liu X, Sheng G, Luo H, et al. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ Sci Technol. 2010;44(11):4355–4360. doi:10.1021/es9016766
  • Lü F, Zhou Q, Wu D, et al. Dewaterability of anaerobic digestate from food waste: relationship with extracellular polymeric substances. Chem Eng J. 2015;262:932–938. doi:10.1016/j.cej.2014.10.051
  • Zhou B, Zhao G, Yan C, et al. Aeration pre-treatment role in improving the performance of bio-conditioning dewatering of food waste anaerobic digestate. Waste Manage. 2024;177:298–306. doi:10.1016/j.wasman.2024.02.015
  • Tao N, Hu L, Fang D, et al. Supplementation of tea polyphenols in sludge Fenton oxidation improves sludge dewaterability and reduces chemicals consumption. Water Res. 2022;218:118512. doi:10.1016/j.watres.2022.118512
  • APHA. Standard methods for the examination of water and wastewater. Washington, DC; 2005.
  • Li T, Yang J, Zhou Y, et al. Enhancing sludge dewatering efficiency through bioleaching facilitated by increasing reactive oxygen species. Water Res. 2023;231:119622. doi:10.1016/j.watres.2023.119622
  • Frølund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–1758.
  • He D, Wang L, Jiang H, et al. A Fenton-like process for the enhanced activated sludge dewatering. Chem Eng J. 2015;272:128–134. doi:10.1016/j.cej.2015.03.034
  • Zhang D, Wang Y, Dong S, et al. A potential online quantifier of sludge dewaterability developed from the similitude of water and electricity: understanding the water release resistances as the medium. Chem Eng J. 2022;448:137737. doi:10.1016/j.cej.2022.137737
  • Wu K, Chen Z, Li J, et al. Manipulating the flow of nanoconfined water by temperature stimulation. Angew Chem-Int Edit. 2018;57(28):8432–8437. doi:10.1002/anie.201712915
  • Liang Y, Wang R, Sun W, et al. Advances in chemical conditioning of residual activated sludge in China. Water. 2023;15(2):345. doi:10.3390/w15020345
  • Radhakrishnan AKT, van Lier JB, Clemens FHLR. Rheological characterisation of concentrated domestic slurry. Water Res. 2018;141:235–250. doi:10.1016/j.watres.2018.04.064
  • Xue Y, Liu H, Chen S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem Eng J. 2015;264:174–180. doi:10.1016/j.cej.2014.11.005
  • Farno E, Baudez JC, Parthasarathy R, et al. Impact of thermal treatment on the rheological properties and composition of waste activated sludge: COD solubilisation as a footprint of rheological changes. Chem Eng J. 2016;295:39–48. doi:10.1016/j.cej.2016.03.022
  • Liao X, Li H, Zhang Y, et al. Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int Biodeterior Biodegrad. 2016;106:141–149. doi:10.1016/j.ibiod.2015.10.023
  • Liu X, Yin H, Zhao J, et al. Understanding the coagulation mechanism and floc properties induced by ferrate(VI) and FeCl3: population balance modeling. Water Sci Technol. 2021;83(10):2377–2388. doi:10.2166/wst.2021.150
  • Fan MH, Brown RC, Sung SW, et al. Comparisons of polymeric and conventional coagulants in arsenic(V) removal. Water Environ Res. 2003;75(4):308–313. doi:10.2175/106143003X141114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.