31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced filtration membranes with graphene oxide and tannic acid for textile industry wastewater dye removal

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Received 22 Mar 2024, Accepted 12 Jun 2024, Published online: 02 Jul 2024

References

  • Lin J, et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J Memb Sci. 2016;514:217–228. doi:10.1016/j.memsci.2016.04.057
  • Ghaly AE, Ananthashankar R, Alhattab M, et al. Production, characterization and treatment of textile effluents: a critical review. Chem Eng Process Technol. 2014;5(1):1–18. doi:10.4172/2157-7048.1000182
  • Petcu AR, Lazar CA, Rogozea EA, et al. Nonionic microemulsion systems applied for removal of ionic dyes mixtures from textile industry wastewaters. Sep Purif Technol. 2016;158:155–159. doi:10.1016/j.seppur.2015.12.002
  • Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2019;16:1193–1226. doi:10.1007/s13762-018-2130-z
  • Zhou Y, Lu J, Zhou Y, et al. Recent advances for dyes removal using novel adsorbents: a review. Environ Poll. 2019;252:352–365. doi:10.1016/j.envpol.2019.05.072
  • Tavangar T, Karimi M, Rezakazemi M, et al. Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chem Eng J. 2020;385:123787. doi:10.1016/j.cej.2019.123787
  • Cardoso JC, Bessegato GG, Zanoni MVB. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 2016;98:39–46. doi:10.1016/j.watres.2016.04.004
  • Qiu W-Z, Yang H-C, Wan L-S, et al. Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. J Mater Chem A. 2015;3(27):14438–14444. doi:10.1039/C5TA02590G
  • Lim MY, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. J Memb Sci. 2017;521:1–9. doi:10.1016/j.memsci.2016.08.067
  • Li Q, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Memb Sci. 2019;584:324–332.
  • Paixão RM, Silva LHBR, Reck IM, et al. Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environ Technol. 2019: 1–8.
  • Beluci NdCL, Homem NC, Amorim MTSP, et al. Biopolymer extracted from Moringa oleifera Lam. in conjunction with graphene oxide to modify membrane surfaces. Environ Technol. 2020;41(23):3069–3080. doi:10.1080/09593330.2019.1597172
  • Homem NC, et al. Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci. 2019;486:499–507.
  • Januário EFD, Beluci NCL, Vidovix TB, et al. Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal. Process Saf Environ Prot. 2020;134(February 2020):140–148. doi:10.1016/j.psep.2019.11.030
  • Buckley CA. Membrane technology for the treatment of dyehouse effluents. Water Sci Technol. 1992;25(10):203–209. doi:10.2166/wst.1992.0248
  • Kajau A, Motsa M, Mamba BB, et al. Leaching of CuO nanoparticles from PES ultrafiltration membranes. ACS Omega. Nov. 2021;6(47):31797–31809. doi:10.1021/acsomega.1c04431
  • Galiano F, et al. A step forward to a more efficient wastewater treatment by membrane surface modi fi cation via polymerizable bicontinuous microemulsion. J Memb Sci. 2015;482:103–114.
  • Wu W, Shi Y, Liu G, et al. Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination. 2020;491:114452. doi:10.1016/j.desal.2020.114452
  • Zhao C, Xue J, Ran F, et al. Modification of polyethersulfone - A review of methods. Prog Mater Sci. 2013;58:76–150.
  • Nady N, Franssen MCR, Zuilhof H, et al. Modification methods for poly(arylsulfone) membranes: A mini-review focusing on surface modification. Desalination. 2011;275(1–3):1–9. doi:10.1016/j.desal.2011.03.010
  • Chang X, Wang Z, Quan S, et al. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl Surf Sci. 2014;316:537–548. doi:10.1016/j.apsusc.2014.07.202
  • Liu G, Jin W, Xu N. Graphene-based membranes. Chem Soc Rev 2015;44(15):5016–5030. doi:10.1039/C4CS00423J
  • Hu M, Mi B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Memb Sci. 2014;469:80–87. doi:10.1016/j.memsci.2014.06.036
  • Abdel-Karim A, et al. High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chem Eng J. 2018;334:789–799. doi:10.1016/j.cej.2017.10.069
  • Aditya Kiran S, Lukka Thuyavan Y, Arthanareeswaran G, et al. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem Eng J. 2016;286:528–537. doi:10.1016/j.cej.2015.10.091
  • Yeh C-N, Raidongia K, Shao J, et al. On the origin of the stability of graphene oxide membranes in water. Nat Chem. Feb. 2015;7(2):166–170. doi:10.1038/nchem.2145
  • Zhang Y, et al. Persimmon tannin/graphene oxide composites: Fabrication and superior adsorption of germanium ions in aqueous solution. J Taiwan Inst Chem Eng. Nov. 2019;104:310–317. doi:10.1016/j.jtice.2019.08.024
  • Homem NC, et al. Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci. Aug. 2019;486:499–507. doi:10.1016/j.apsusc.2019.04.276
  • da Silva LHBR, Paixão RM, Bergamasco R, et al. Layer-by-layer self-assembly of polyethersulphone microfiltration membranes for dye removal and flux recovery improvement. Can J Chem Eng. 2022;100(8):1920–1929. doi:10.1002/cjce.24278
  • Januário EFD, Vidovix TB, Calsavara MA, et al. Membrane surface functionalization by the deposition of polyvinyl alcohol and graphene oxide for dyes removal and treatment of a simulated wastewater. Chem Eng Process. Jan. 2022;170:108725. doi:10.1016/j.cep.2021.108725
  • Pan L, Wang H, Wu C, et al. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. Appl Mater Interfaces. 2015;7(29):16003–116010. doi:10.1021/acsami.5b04245
  • Cruz BH, Díaz-Cruz JM, Ariño C, et al. Heavy metal binding by tannic acid: A voltammetric study. Electroanalysis. Oct. 2000;12(14):1130–1137. doi:10.1002/1521-4109(200010)12:14 < 1130::AID-ELAN1130 > 3.0.CO;2-7
  • Lim M-Y, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. J Memb Sci. Jan. 2017;521:1–9. doi:10.1016/j.memsci.2016.08.067
  • Wu H, Xie J, Mao L. One-pot assembly tannic acid-titanium dual network coating for low-pressure nanofiltration membranes. Sep Purif Technol. Feb. 2020;233:116051. doi:10.1016/j.seppur.2019.116051
  • Wu W, Shi Y, Liu G, et al. Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination. Oct. 2020;491:114452. doi:10.1016/j.desal.2020.114452
  • Xiao Y, et al. Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation. Appl Surf Sci. Jun. 2020;515:146063. doi:10.1016/j.apsusc.2020.146063
  • Hegab HM, et al. Single-step assembly of multifunctional poly(tannic acid)–graphene oxide coating to reduce biofouling of forward osmosis membranes. ACS Appl Mater Interfaces. Jul. 2016;8(27):17519–17528. doi:10.1021/acsami.6b03719
  • Paixão RM, da Silva LHBR, Reck IM, et al. Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environ Technol. Jan. 2021;42(3):351–357. doi:10.1080/09593330.2019.1627426
  • do Nascimento NN, Vieira AC, Tardioli PW, et al. Valorization of soybean oil residue through advanced technology of graphene oxide modified membranes for tocopherol recovery. Can J Chem Eng. Dec. 2022;100(12):3736–3749. doi:10.1002/cjce.24364
  • Yamaguchi NU, Bergamasco R, Hamoudi S. Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chem Eng J. 2016;295:391–402. doi:10.1016/j.cej.2016.03.051
  • Qiu Z, Ji X, He C. Fabrication of a loose nanofiltration candidate from Polyacrylonitrile/Graphene oxide hybrid membrane via thermally induced phase separation. J Hazard Mater. 2018;360:122–131. doi:10.1016/j.jhazmat.2018.08.004
  • Wang L, Wang N, Li J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance. Sep Purif Technol. 2016;160:123–131.
  • Xu H, Ding M, Liu S, et al. Preparation and characterization of novel polysulphone hybrid ultrafiltration membranes blended with N-doped GO/TiO2 nanocomposites. Polymer (Guildf). 2017;117:198–207. doi:10.1016/j.polymer.2017.04.022
  • Mokkapati VRSS, Koseoglu-Imer DY, Yilmaz-Deveci N, et al. Membrane properties and anti-bacterial/anti-fouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent. RSC Adv. 2017;8:4378–4386. doi:10.1039/C6RA25015G
  • Yan X, et al. Layer-by-layer assembly of bio-inspired borate/graphene oxide membranes for dye removal. Chemosphere. 2020;256:127118. doi:10.1016/j.chemosphere.2020.127118
  • Chong JY, Wang B, Mattevi C, et al. Dynamic microstructure of graphene oxide membranes and the permeation flux. J Memb Sci. 2018;549:385–116392. doi:10.1016/j.memsci.2017.12.018
  • Chong JY, Wang B, Mattevi C, et al. Dynamic microstructure of graphene oxide membranes and the permeation flux. J Memb Sci. Mar. 2018;549:385–392. doi:10.1016/j.memsci.2017.12.018
  • Beluci NdCL, Homem NC, Amorim MTSP, et al. Biopolymer extracted from Moringa oleifera Lam. in conjunction with graphene oxide to modify membrane surfaces. Environ Technol. Oct. 2020;41(23):3069–3080. doi:10.1080/09593330.2019.1597172
  • Diogo Januário EF, de Camargo Lima Beluci N, Vidovix TB, et al. Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal. Process Saf Environ Prot. Feb. 2020;134:140–148. doi:10.1016/j.psep.2019.11.030
  • Januário EFD, Paixão RM, de N, et al. Simple assembly of graphene oxide functionalized with tannic acid on membranes to enhance dye removal. Chem Eng Commun. Sep. 2023;210(9):1434–1444. doi:10.1080/00986445.2022.2107510
  • Li Q, et al. Tannic acid assisted interfacial polymerization based loose thin-film composite NF membrane for dye/salt separation. Desalination. Apr. 2020;479:114343. doi:10.1016/j.desal.2020.114343
  • Li Q, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Memb Sci. Aug. 2019;584:324–332. doi:10.1016/j.memsci.2019.05.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.