17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the main factor affecting the NOx distribution in the street canyon with the photo-catalytic wall

, , &
Received 16 Nov 2022, Accepted 06 Jun 2024, Published online: 02 Jul 2024

References

  • Yu BD, Hou JX, He W, et al. Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification. Appl Energy. 2018;226:365–380. doi:10.1016/j.apenergy.2018.05.111
  • Gopalan AI, Lee JC, Saianand G, et al. Recent progress in the abatement of hazardous pollutants using photocatalytic TiO2-based building materials. Nanomaterials. 2020;10:1854. doi:10.3390/nano10091854
  • Gu HZ, Tong ZQ. Application of photocatalysis technology of titanium dioxide in purifying harmful gas. Environ Prot Transport. 2004;25(4):39–42. In Chinese.
  • Yang Y, Liu HP, Wu H, et al. A dissertation on research overview on nanometer TiO2 photocatalytic degradation automobile exhaust in China. Commun Sci Technol Heilongjiang. 2017;6:176–177. In Chinese.
  • Behera GC, Biswal N, Parida K. Unexpected rapid photo-catalytic decolourisation/degradation of organic pollutants over highly active hetero junction based vanadium phosphate catalyst. Catal Today. 2017;284:84–91. doi:10.1016/j.cattod.2016.10.017
  • Weng KW, Huang YP. Preparation of TiO2 thin films on glass surfaces with self-cleaning characteristics for solar concentrators. Surf Coat Technol. 2013;231(25):201–204.
  • Luna M, Gatica JM, Vidal H, et al. Use of Au/N-TiO2/SiO2 photocatalysts in building materials with NO depolluting activity. J Cleaner Prod. 2020;243:118633. doi:10.1016/j.jclepro.2019.118633
  • Maggos T, Plassais A, Bartzis JG, et al. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ Monit Assess. 2008;136(1):35–44.
  • Shchelokova EA, Tyukavkina VV, Tsyryatyeva AV, et al. Synthesis and characterization of SiO2-TiO2 nanoparticles and their effect on the strength of self-cleaning cement composites. Constr Build Mater. 2021;283:122769. doi:10.1016/j.conbuildmat.2021.122769
  • Folli A, Strøm M, Madsen TP, et al. Field study of air purifying paving elements containing TiO2. Atmos Environ. 2015;107:44–51. doi:10.1016/j.atmosenv.2015.02.025
  • Guerrini GL. Photocatalytic performances in a city tunnel in Rome: NOx monitoring results. Constr Build Mater. 2012;27(1):165–175. doi:10.1016/j.conbuildmat.2011.07.065
  • Chen XF, Kou SC, Poon CS. Rheological behaviour, mechanical performance, and NOx removal of photocatalytic mortar with combined clay brick sands-based and recycled glass-based nano-TiO2 composite photocatalysts. Constr Build Mater. 2020;240:117698. doi:10.1016/j.conbuildmat.2019.117698
  • Huang Y, Gao Y, Zhang Q, et al. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: characterization, mechanistic and photocatalytic NOx removal studies. Appl Catal A. 2016;515:170–178. doi:10.1016/j.apcata.2016.02.007
  • Yu BD, Liu XY, Li NS, et al. The performance analysis of a purified PV/T-Trombe wall based on thermal catalytic oxidation process in winter. Energy Convers Manage. 2020;203:112262. doi:10.1016/j.enconman.2019.112262
  • Huang RJ, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2014;514(7521):218–222. doi:10.1038/nature13774
  • Zhang WG, Wang F. Experimental study on asphalt composite UV absorption anti-aging agent. Appl Mech Materials. 2014;484–485(2):89–95. doi:10.4028/www.scientific.net/AMM.484-485.89
  • Lettieri M, Colangiuli D, Masieri M, et al. Field performances of nanosized TiO2 coated limestone for a self-cleaning building surface in an urban environment. Build Environ. 2019;147:506–516. doi:10.1016/j.buildenv.2018.10.037
  • Nakayama H, Hayashi A, Eguchi T, et al. Adsorption of formaldehyde by polyamine-intercalated α-zirconium phosphate. Solid State Sci. 2002;4(8):1067–1070. doi:10.1016/S1293-2558(02)01367-5
  • And TO, Onaka M. Formaldehyde encapsulated in zeolite: a long-lived, highly activated one-carbon electrophile to carbonyl-ene reactions. J Am Chem Soc. 2004;126(8):2306–2307. doi:10.1021/ja039737p
  • Saeung S, Boonamnuayvitaya V. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. J Environ Sci. 2008;20(3):379–384. doi:10.1016/S1001-0742(08)60059-5
  • Yu MJ, Kim JM, Park SH, et al. Removal of indoor formaldehyde over CMK-8 adsorbents. J Nanosci Nanotechnol. 2013;13(4):2879–2884. doi:10.1166/jnn.2013.7401
  • Peng HG, Ying JW, Zhang JY, et al. La-doped Pt/TiO2 as an efficient catalyst for room temperature oxidation of low concentration HCHO. Chin J Catal. 2017;38:39–47. doi:10.1016/S1872-2067(16)62532-9
  • Shen HY, Du FL, Liu YH, et al. CFD investigation of the statistical characteristics of NOx photo-catalytic degradation in a glass curtain wall in hazy winter weather. Sustain Cities Soc. 2019;50:101668. doi:10.1016/j.scs.2019.101668
  • Mohseni M, Taghipour F. Experimental and CFD analysis of photocatalytic gas phase vinyl chloride (VC) oxidation. Chem Eng Sci. 2004;59(7):1601–1609. doi:10.1016/j.ces.2004.01.017
  • Salvado-Estivill I, Brucato A, Puma GL. Two-dimensional modeling of a flat-plate photocatalytic reactor for oxidation of indoor air pollutants. Ind Eng Chem Res. 2007;46(23):7489–7496. doi:10.1021/ie070391r
  • Hossain MM, Raupp GB, Hay SO, et al. Three-dimensional developing flow model for photocatalytic monolith reactors. AIChE J. 1999;45(6):1309–1321. doi:10.1002/aic.690450615
  • Yakhot V, Orszag SA. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput. 1986;1(1):3–51. doi:10.1007/BF01061452
  • Yakhot V, Orszag SA, Thangam S, et al. Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A. 1992;4:1510–1520. doi:10.1063/1.858424
  • Kim JJ, Baik JJ. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-ε turbulence model. Atmos Environ. 2004;38(19):3039–3048. doi:10.1016/j.atmosenv.2004.02.047
  • Shih TH, Liou WW, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids. 1995;24(3):227–238. doi:10.1016/0045-7930(94)00032-T
  • Tominaga Y, Stathopoulos T. Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k–ε models. Atmos Environ. 2009;43:3200–3210. doi:10.1016/j.atmosenv.2009.03.038
  • Verbruggen SW, Lenaerts S, Denys S. Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis. Chem Eng J. 2015;262:1–8.
  • Puddu V, Choi H, Dionysiou DD, et al. Tio2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl Catal B. 2010;94(3–4):211–218. doi:10.1016/j.apcatb.2009.08.003
  • Wang X, Tan X, Yu T. Kinetic study of ozone photocatalytic decomposition using a thin film of TiO2 coated on a glass plate and the CFD modeling approach. Ind Eng Chem Res. 2014;53(19):7902–7909. doi:10.1021/ie403144w
  • Walsem JV, Verbruggen SW, Modde B, et al. CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions. Chem Eng J. 2016;304:808–816. doi:10.1016/j.cej.2016.07.028
  • Konstantinou IK, Albanis TA. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl Catal B. 2003;42(4):319–335. doi:10.1016/S0926-3373(02)00266-7
  • Hang J, Chen XY, Chen GW, et al. The influence of aspect ratios and wall heating conditions on flow and passive pollutant exposure in 2D typical street canyons. Build Environ. 2020;168:106536.1–106536.20. doi:10.1016/j.buildenv.2019.106536
  • Tominaga Y, Mochida A, Yoshie R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn. 2008;96(10):1749–1761.
  • Gromke C, Blocken B. Influence of avenue-trees on air quality at the urban neighborhood scale. Part I: quality assurance studies and turbulent Schmidt number analysis for RANS CFD simulations. Environ Pollut. 2015;196:214–223. doi:10.1016/j.envpol.2014.10.016
  • Zhang K, Chen GW, Wang XM, et al. Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons. Sci Total Environ. 2019;653:968–994. doi:10.1016/j.scitotenv.2018.10.333
  • Zhang YW, Gu ZL, Lee SC, et al. Numerical and in situ investigation of fine particle dispersion in an actual deep street canyon in Hong Kong. Indoor Built Environ. 2011;20(2):206–216. doi:10.1177/1420326X10387694
  • Cheng Y, Lee SC, Ho KF, et al. On-road particulate matter (PM2.5) and gaseous emissions in the Shing Mun tunnel, Hong Kong. Atmos Environ. 2006;40(23):4235–4245.
  • Chen M, Liu Y. NOx removal from vehicle emissions by functionality surface of asphalt road. J Hazard Mater. 2010;174(1–3):375–379. doi:10.1016/j.jhazmat.2009.09.062
  • Chen M, Chu JW. NOx photocatalytic degradation on active concrete road surface – from experiment to real-scale application. J Cleaner Prod. 2011;19(11):1266–1272. doi:10.1016/j.jclepro.2011.03.001
  • Yang R, Zhang YP, Zhao RY. An improved model for analyzing the performance of photocatalytic oxidation reactors in removing volatile organic compounds and its application. J Air Waste Manage Assoc. 2004;54(12):1516–1524. doi:10.1080/10473289.2004.10471016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.