8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Diesel removal in non-aqueous phase by fibres from Calotropis procera: kinetic, isothermal and sorption potential evaluation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Received 16 Oct 2023, Accepted 13 Jun 2024, Published online: 07 Jul 2024

References

  • Ciampi P, Esposito C, Cassiani G, et al. 2021. A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat. doi:10.1007/s11356-021-14558-2/Published
  • Bortoni SF, Schlosser RT, Barbosa MC. Numerical modeling of Multiphase Extraction (MPE) Aiming at LNAPL recovery in tropical soils. Water (Switzerland). 2019;11(11): 2248. doi:10.3390/w11112248.
  • Ramalho AMZ, Aquino Sobrinho HL, Anjos RB, et al. Delimitação de área de fase livre através do software Sketchup 8 como suporte para cálculo de volume de vazamentos de combustíveis no solo. Engenharia Ambiental – Espírito Santo do Pinhal. 2013;10(4):148–157.
  • Ramalho AMZ, Aquino Sobrinho HL, Anjos RB, et al. Study of contamination by benzene due diesel and gasoline leaks at a gas station in Natal/Brazil. Int J Eng Technol IJET –IJENS. 2014;14:49–54.
  • Newell CJ, Acree SD, Ross RR, et al. Light nonaqueous phase liquids, 1995. In: US EPA: Ground Water Issue; EPA/540/S-95/500. Washington, DC: US EPA; 1995. p. 1–28.
  • Huntley D, Beckett GD. Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery. J Contam Hydrol. 2002;59(1–2):3–26. doi:10.1016/S0169-7722(02)00073-6
  • Falciglia PF, Madalena R, Mancuso G, et al. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy. J Environ Manag. 2016;167:196–205. doi:10.1016/j.jenvman.2015.11.046
  • Chen CH, Whang LM, Pan CL, et al. Immobilization of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater. Int Biodeterior Biodegration. 2017;124:62–72. doi:10.1016/j.ibiod.2017.07.001
  • Chen WY, Pokhrel P, Wang YS, et al. Combined application of ozone and hydrogen peroxide to degrade diesel contaminants in soil and groundwater. Water (Basel). 2021;13:3404, doi:10.3390/w13233404
  • Ossai IC, Ahmed A, Hassan A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov. 2020;17:100526, doi:10.1016/j.eti.2019.100526
  • Verardo E, Atteia O, Rouvreau L, et al. Identifying remedial solutions through optimal bioremediation design under real-world field conditions. J Contam Hydrol. 2021;237:103751. doi:10.1016/j.jconhyd.2020.103751.
  • Silva DR, Ramalho AMZ. 2012. Capítulo 9: Uma cidade sob investigação de passivo ambiental. In: Adequação ambiental de postos de combustíveis em Natal e recuperação de área degradada (Organização: Dias, G. M.). Ministério Público do Rio Grande do Norte, ISBN: 978-85-60809-04-2.
  • Zhang A, Chen M, Du C, et al. Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton. ACS Appl Mater Interfaces. 2013;5:10201–10206. doi:10.1021/am4029203
  • Wu L, Li L, Li B, et al. Magnetic, durable, and superhydrophobic polyurethane FeO SiO fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces. 2015;7:4936–4946. doi:10.1021/am5091353
  • Ke Q, Jin Y, Jiang P, et al. Oil/water separation performances of superhydrophobic and superoleophilic sponges. Langmuir. 2014;30:13137–13142. doi:10.1021/la502521c
  • Pan Y, Shi K, Peng C, et al. Evaluation of hydrophobic polyvinylalcohol formaldehyde sponges as absorbents for oil spill. ACS Appl Mater Interfaces. v. 2014;6:8651–8659. doi:10.1021/am5014634
  • Syed S, Alhazzaa MI, Asif M. Treatment of oily water using hydrophobic nanosilica. Chem Eng J. 2011;167:99–103. doi:10.1016/j.cej.2010.12.006
  • Seal S, Sakthivel T, Reid D, et al. Hydrophobic high surfasse area zeolites derived from fly ash for oil spill remediation. Env Sci Technol. 2013;47:5843–5850. doi:10.1021/es3048174
  • Bastani D, Safekordi A, Alihosseini A, et al. Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol. 2006;52:295–300. doi:10.1016/j.seppur.2006.05.004
  • Zadaka-Amir D, Bleiman N, Mishael YG. Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater. 2013;169:153–159. doi:10.1016/j.micromeso.2012.11.002
  • Mysore D, Viraragavan T, Jin Y. Treatment of oily waters using vermiculite. Water Res. 2005;39:2643–2653. doi:10.1016/j.watres.2005.04.034
  • Adebajo MO, Frost RL. Acetylation of raw cotton for oil spill cleanup application: an FTIR and 13C MAS NMR spectroscopic investigation. Spectrochim Acta, Part A. 2004;10:2315–2321. doi:10.1016/j.saa.2003.12.005
  • Kalmykova Y, Moona N, Strömvall AM, et al. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters. Water Res. 2014;56:246–257. doi:10.1016/j.watres.2014.03.011
  • Catania V, Lopresti F, Cappello S, et al. Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil-contaminated water. New Biotechnol. 2020;58:25–31. doi:10.1016/j.nbt.2020.04.001
  • Anjos RBd, Anjos ASDd, Juviniano HBdM, et al. Study of Mandacaru (Cereus jamacaru DC), in natura and modified by microemulsion, as a biosorbent for diesel oil. Acta Sci Technol. 2020a;43:e49874, doi:10.4025/actascitechnol.v43i1.49874
  • Gurav R, Bhatia SK, Choi TR, et al. Adsorptive removal of crude petroleum oil from water using floating pinewood biochar decorated with coconut oil-derived fatty acids. Sci Total Environ. 2021;781:146636, doi:10.1016/j.scitotenv.2021.146636
  • Jjagwe J, Olupot PW, Menya E, et al. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J Bioresour Bioprod. 2021;6(4):292–322. doi:10.1016/j.jobab.2021.03.003
  • Santos JR, Anjos RB, Bezerra BGP, et al. 2023. Biosorption process using Cereus jamacaru DC, Cactaceae for Pb2+ removal from aqueous systems. Environmental Technology. doi:10.1080/09593330.2023.2216902
  • Fabricante JR, Oliveira MNAD, Siqueira Filho JAD. Aspectos da ecologia de Calotropis procera (Apocynaceae) em uma área de Caatinga alterada pelas obras do Projeto de Integração do Rio São Francisco em Mauriti, CE. Rodriguésia. 2013;64:647–654. doi:10.1590/S2175-78602013000300015
  • Hassan LM, Galal TM, Farahat EA, et al. The biology of Calotropis procera (Aiton) W.T. Trees. 2015;29:311–320. doi:10.1007/s00468-015-1158-7
  • Kaur A, Batish DR, Kaur S, et al. An overview of the characteristics and potential of calotropis procera from botanical, ecological, and economic perspectives. Front Plant Sci. 2021;12:1–13. doi:10.3389/fpls.2021.690806
  • Emenike EC, Adeleke J, Iwuozor KO, et al. Adsorption of crude oil from aqueous solution: a review. J Water Process Eng. 2022;50:103330, doi:10.1016/j.jwpe.2022.103330
  • Hilário LS, Anjos RB, Juviniano HBM, et al. Evaluation of thermally treated calotropis procera fiber for the removal of crude oil on the water surface. Materials (Basel). 2019;12(23):3994, doi:10.3390/ma12233894
  • Anjos RB, Hilário LS, Juviniano HBM, et al. Crude oil removal using Calotropis procera. Bioresources. 2020b;15(3):5246–5263. doi:10.15376/biores.15.3.5246-5263
  • Anjos RBd, Silva WPN, Silva AADd, et al. E. V. Use of statistical modeling for BTEX prediction in cases of crude oil spill in seawater. Environ Technol. 2021;43:1–9. doi:10.1080/09593330.2021.1906325
  • Barros Neto B, Scarminio IS, Bruns RE. Como fazer experimentos. 4ª ed. Editora Bookman: São Paulo; 2010.
  • Pallewatta S, Samarasekara SM, Rajapaksha AU, et al. Oil spill remediation by biochar derived from bio-energy industries with a pilot-scale approach during the X-Press Pearl maritime disaster. Mar Pollut Bull. 2023;189:114813, doi:10.1016/j.marpolbul.2023.114813
  • Wang Z, Saleem J, Barford JP, et al. Preparation and characterization of modified rice husks by biological delignification and acetylation for oil spill cleanup. Environ Technol. 2020;41:1980–1991. doi:10.1080/09593330.2018.1552725
  • Yoganandam K, Ganeshan P, Nagarajaganesh B, et al. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. J Nat FibresFiber. 2019;17(12):1706–1718. doi:10.1080/15440478.2019.1588831
  • Mazaherifar MH, Hosseinabadi HZ, Coșereanu C, et al. Investigation on Phoenix dactylifera/Calotropis procera fibre-reinforced epoxy hybrid composites. Florest. 2022;13:2098, doi:10.3390/f13122098
  • Thamer BM, Al-Enizi A, Altaleb HA, et al. Hollow carbon fibers and flakes derived from Calotropis procera as adsorbents for dye removal from aqueous solutions. Mater Chem Phys. 2022;279:125752, doi:10.1016/j.matchemphys.2022.125752
  • Sharma R, Singh GP, Joshi A. The effect of alkali treatment on thermo-physical properties of Calotropis Procera (Aak) fibres. Mater Today Proc. 2023;80:1066–1070. doi:10.1016/j.matpr.2022.11.464
  • Santos MR, Da Silva FAG, Ferrais PP, et al. Polyaniline-coated Calotropis procera L. hollow tubular fibers with remarkable antibacterial activity. SN Appl Sci. 2020;2:1550, doi:10.1007/s42452-020-03345-2
  • Thilagavathi G, Karan CP, Das D. Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers. J Environ Manag. 2018;219:340–349. doi:10.1016/j.jenvman.2018.04.107
  • Oliveira LMTM, Oliveira LFAM, Sonsin AF, et al. Ultrafast diesel oil spill removal by fibers from silk-cotton tree: Characterization and sorption potential evaluation. J Cleaner Prod. 2020;263:121448, doi:10.1016/j.jclepro.2020.121448
  • Oliveira LMTM, Saleem J, Bazargan A, et al. Sorption as a rapidly response for oil spill accidents: a material and mechanistic approach. J Hazard Mater. 2021;407:124842, doi:10.1016/j.jhazmat.2020.124842
  • Song K, Zhu X, Zhu W, et al. Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresour Bioprocess. 2019;6(1):45. doi:10.1186/s40643-019-0279-z.
  • Oun AA, Rhim JW. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett. 2016;168:146–150. doi:10.1016/j.matlet.2016.01.052
  • Zheng Y, Wang J, Zhu Y, et al. Research and application of kapok fiber as an absorbing material: a mini review. J Environ Sci. 2015;27:21–32. doi:10.1016/j.jes.2014.09.026
  • Katselas A, Motion A, O’reilly C, et al. Chemical curiosity on campus: Na undergraduate project on the structure and wettability of natural surfaces. J Chem Educ. 2019;96:1998–2002. doi:10.1021/acs.jchemed.9b00324
  • ATKINS, P. W. Físico-química. 1999. 6. ed. Rio de Janeiro: LTC.
  • Toshev BV, Platikanov D. Wetting: Gibbs’ superficial tension revisited. Colloids Surf, A. 2006;291:177–180. doi:10.1016/j.colsurfa.2006.06.013
  • Barthlott W, Neinhuis C. Purity os the sacred lotus or escape from contamination in biological surfaces. Planta. 1997;202:1–8. doi:10.1007/s004250050096
  • Asadu CO, Ezema CA, Elijah OC, et al. Equilibrium isotherm modelling and optimization of oil layer removal from surface water by organic acid grafted plantain pseudo stem fiber. Case Stud Chem Environ Eng. 2022;5:100194. doi:10.1016/j.cscee.2022.100194
  • Nascimento RF, Neto VOS, Melo DQ, et al. Uso de bioadsorventes lignocelulósicos na remoção de poluentes de efluentes aquosos. 1 ed. Fortaleza: Imprensa Universitária; 2014.
  • Annunciado TR, Sydenstricker THD, Amico SC. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull. 2005;50(11):1340–1346. doi:10.1016/j.marpolbul.2005.04.043
  • ITOPF. The International Tanker Owners Pollution Federation. Used of sorbent for oil spill control. London, United Kingdom; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.