12
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recovery of ammonia nitrogen from simulated reject water by bipolar membrane electrodialysis

, ORCID Icon, , , , , , , & show all
Received 30 Oct 2023, Accepted 14 Jun 2024, Published online: 18 Jul 2024

References

  • Yin Q, Zhu X, Zhan G, et al. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. J Environ Sci. 2016;42:210–214. https://doi.org/10.1016/j.jes.2015.07.006.
  • Rajendran K, Aslanzadeh S, Johansson F, et al. Experimental and economical evaluation of a novel biogas digester. Energ Convers Manag. 2013;74:183–191. https://doi.org/10.1016/j.enconman.2013.05.020.
  • Erisman JW, Bleeker A, Galloway J, et al. Reduced nitrogen in ecology and the environment. Environ Pollut. 2007;150:140–149. https://doi.org/10.1016/j.envpol.2007.06.033.
  • Chen SS, Dong B, Yang DH, et al. Micron-sized silica particles in wastewater influenced the distribution of organic matters in sludge and their anaerobic degradation. J Hazard Mater. 2020;393:122340. https://doi.org/10.1016/j.jhazmat.2020.122340.
  • Li Y, Chen Z, Peng Y, et al. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. Water Res. 2022;217:118440. https://doi.org/10.1016/j.watres.2022.118440.
  • Zhou H, Xing D, Ma J, et al. Electrifying anaerobic granular sludge for enhanced waste anaerobic digestion and biogas production. Sep Purif Technol. 2022;295:121300. https://doi.org/10.1016/j.seppur.2022.121300.
  • Huong NTT, Md TN, Booki M. Accelerating anaerobic digestion process with novel single chamber microbial electrochemical systems with baffle. Bioresour Technol. 2022;359:127474. https://doi.org/10.1016/j.biortech.2022.127474.
  • Chen SS, Dai XH, Yang DH, et al. Effects of sludge age on anaerobic acidification of waste activated sludge: Volatile fatty acids production and phosphorus release. J Environ Sci. 2021;105:11–21. https://doi.org/10.1016/j.jes.2020.12.030.
  • Grant SB, Saphores JD, Feldman DL, et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Sci. 2012;337:681–686. https://doi.org/10.1126/science.1216852.
  • Lang X, Li Q, Ji M, et al. Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2. Bioresour Technol 2020;302:122799. https://doi.org/10.1016/j.biortech.2020.122799.
  • Wen X, Liang D, Hu Y, et al. Performance and mechanism of simultaneous nitrification and denitrification in zeolite spheres internal loop airlift reactor. Bioresour Technol. 2023;380:129073. https://doi.org/10.1016/j.biortech.2023.129073.
  • Zhang Q, Zheng J, Zhao L, et al. Succession of microbial communities reveals the inevitability of anammox core in the development of anammox processes. Bioresour Technol. 2023;371:128645. https://doi.org/10.1016/j.biortech.2023.128645.
  • Kuntke P, Sleutels T, Rodriguez Arredondo M, et al. (Bio)electrochemical ammonia recovery: progress and perspectives. Appl Microbiol Biotechnol. 2018;102:3865–3878. https://doi.org/10.1007/s00253-018-8888-6.
  • Mehta CM, Khunjar WO, Nguyen V, et al. Technologies to Recover Nutrients from Waste Streams: A critical review. Crit Rev Environ Sci Technol. 2014;45:385–427. https://doi.org/10.1080/10643389.2013.866621.
  • Adam MR, Othman MHD, Abu Samah R, et al. Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Sep Purif Technol. 2019;213:114–132. https://doi.org/10.1016/j.seppur.2018.12.030.
  • Wang X, Lü S, Gao C, et al. Highly efficient adsorption of ammonium onto palygorskite nanocomposite and evaluation of its recovery as a multifunctional slow-release fertilizer. Chem Eng J. 2014;252:404–414. https://doi.org/10.1016/j.cej.2014.04.097.
  • Imchuen N, Lubphoo Y, Chyan JM, et al. Using cation exchange resin for ammonium removal as part of sequential process for nitrate reduction by nanoiron. Sustain Environ Res. 2016;26:156–160. https://doi.org/10.1016/j.serj.2016.01.002.
  • Chen T, Bi J, Ji Z, et al. Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review. Water Res. 2022;226:119274. https://doi.org/10.1016/j.watres.2022.119274.
  • Luo Y, Liu Y, Shen J, et al. Application of bipolar membrane electrodialysis in environmental protection and resource recovery: A review. Membranes (Basel. 2022;12:1–22. https://doi.org/10.3390/membranes12090829.
  • Zetian S, Dong H, Jiawei X. Experimental investigation on the mechanical vapor recompression evaporation system coupled with multiple vacuum membrane distillation modules to treat industrial wastewater. Sep Purif Technol. 2021;275:119178. https://doi.org/10.1016/j.seppur.2021.119178.
  • Bhadja V, Sharma S, Kulshrestha V, et al. Preparation of heterogeneous bipolar membranes and their performance evaluation for the regeneration of acid and alkali. RSC Adv. 2015;5:57632–57639. https://doi.org/10.1039/c5ra08260a.
  • Li J, Morthensen ST, Zhu J, et al. Exfoliated MoS2 nanosheets loaded on bipolar exchange membranes interfaces as advanced catalysts for water dissociation. Sep Purif Technol. 2018;194:416–424. https://doi.org/10.1016/j.seppur.2017.11.065.
  • Achoh A, Zabolotsky V, Melnikov S. Conversion of water-organic solution of sodium naphtenates into naphtenic acids and alkali by electrodialysis with bipolar membranes. Sep Purif Technol. 2019;212:929–940. https://doi.org/10.1016/j.seppur.2018.12.013.
  • Chen X, Ruan X, Kentish SE, et al. Production of lithium hydroxide by electrodialysis with bipolar membranes. Sep Purif Technol. 2021;274:119026. https://doi.org/10.1016/j.seppur.2021.119026.
  • Shen J, Huang J, Liu L, et al. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge. J Hazard Mater. 2013;260:660–667. https://doi.org/10.1016/j.jhazmat.2013.06.028.
  • Fu L, Gao X, Yang Y, et al. Preparation of succinic acid using bipolar membrane electrodialysis. Sep Purif Technol. 2014;127:212–218. https://doi.org/10.1016/j.seppur.2014.02.028.
  • Wei X, Wang Y, Yan H, et al. A sustainable valorization of neopentyl glycol salt waste containing sodium formate via bipolar membrane electrodialysis. Sep Purif Technol. 2021;254:117563. https://doi.org/10.1016/j.seppur.2020.117563.
  • Yan K, Hang X, Liu J, et al. Preparation of hypophosphorous acid by bipolar membrane electrodialysis: Process optimization and phosphorous acid minimization. Ind Eng Chem Res. 2019;58:21855–21863. https://doi.org/10.1021/acs.iecr.9b04710.
  • Ghyselbrecht K, Silva A, Van der Bruggen B, et al. Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. J Environ Manage. 2014;140:69–75. https://doi.org/10.1016/j.jenvman.2014.03.009.
  • Kim K, Hyun J, Lee K, et al. Evaluation of recovery characteristic of acidic and alkaline solutions from NaNO3 using conventional electrodialysis and electrodialysis with bipolar membranes. Korean Jour Chem Eng. 2013;30:1760–1769. https://doi.org/10.1007/s11814-013-0089-5.
  • Wei Y, Wang Y, Zhang X, et al. Comparative study on the treatment of simulated brominated butyl rubber wastewater by using bipolar membrane electrodialysis (BMED) and conventional electrodialysis (ED). Sep Purif Technol 2013;110:164–169. https://doi.org/10.1016/j.seppur.2013.03.028.
  • Zhu M, Tian B, Luo S, et al. High-value conversion of waste Na2SO4 by a bipolar membrane electrodialysis metathesis system. Resour: Conserv Recycl. 2022;186:106556. https://doi.org/10.1016/j.resconrec.2022.106556.
  • Li Y, Shi S, Cao H, et al. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water Res. 2016;89:201–209. https://doi.org/10.1016/j.watres.2015.11.038.
  • Wu H, Cao A. Preparation and adding methods of nessler's reagent having effects on determination of water quality ammonia nitrogen. Adv Mater Res. 2013;726-731:1362–1366. https://doi.org/10.4028/www.scientific.net/AMR.726-731.1362.
  • Strathmann H. Electrodialysis, a mature technology with a multitude of new applications. Desalination. 2010;264:268–288. https://doi.org/10.1016/j.desal.2010.04.069.
  • Sun B, Zhang M, Huang S, et al. Study on mass transfer performance and membrane resistance in concentration of high salinity solutions by electrodialysis. Sep Purif Technol. 2022;281:119907. https://doi.org/10.1016/j.seppur.2021.119907.
  • Tang H, Wang X, Zhao X, et al. Ion migration characteristics during the bipolar membrane electrodialysis treatment of concentrated reverse osmosis brine. Desalination. 2023;561:116660. https://doi.org/10.1016/j.desal.2023.116660.
  • Zhang G, Wang Q, Guan W, et al. Batch preparation of ammonium isopolymolybdate solution from ammonium molybdate solutions using bipolar membrane electrodialysis. Sep Purif Technol. 2019;209:676–683. https://doi.org/10.1016/j.seppur.2018.09.015.
  • Huang C, Xu T, Feng H, et al. Win-Win coupling in electrodialysis with bipolar membranes (EDBM) for cleaner production. Ind Eng Chem Res. 2009;48:1699–1705. https://doi.org/10.1021/ie801192k.
  • Melnikov S, Mugtamov O, Zabolotsky V. Study of electrodialysis concentration process of inorganic acids and salts for the two-stage conversion of salts into acids utilizing bipolar electrodialysis. Sep Purif Technol. 2020;235:116198. https://doi.org/10.1016/j.seppur.2019.116198.
  • Vecino X, Reig M, Gibert O, et al. Integration of monopolar and bipolar electrodialysis processes for tartaric acid recovery from residues of the winery industry. ACS Sustain Chem Eng. 2020;8:13387–13399. https://doi.org/10.1021/acssuschemeng.0c04166.
  • Han X, Yan X, Wang X, et al. Preparation of chloride-free potash fertilizers by electrodialysis metathesis. Sep Purif Technol. 2018;191:144–152. https://doi.org/10.1016/j.seppur.2017.09.022.
  • Reig M, Casas S, Valderrama C, et al. Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base. Desalination. 2016;398:87–97. https://doi.org/10.1016/j.desal.2016.07.024.
  • Gao W, Fang Q, Yan H, et al. Recovery of acid and base from sodium sulfate containing lithium carbonate using bipolar membrane electrodialysis. Membranes. 2021;11:1–14. https://doi.org/10.3390/membranes11020152.
  • Nayar K, Lienhard V J. Brackish water desalination for greenhouse agriculture: Comparing the costs of RO, CCRO, EDR, and monovalent-selective EDR. Desalination. 2020;475:114188. https://doi.org/10.1016/j.desal.2019.114188.
  • Xu T. Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resour Conserv Recycl. 2002;37:1–22. https://doi.org/10.1016/S0921-3449(02)00032-0.
  • Zhang X, Han X, Yan X, et al. Continuous synthesis of high purity KNO3 through electrodialysis metathesis. Sep Purif Technol. 2019;222:85–91. https://doi.org/10.1016/j.seppur.2019.04.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.