826
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis

ORCID Icon, ORCID Icon, , &
Pages 552-569 | Received 03 Dec 2018, Accepted 02 Jan 2020, Published online: 23 Jan 2020

References

  • Ashton-Miller, J. A., Wojtys, E. M., Huston, L. J., & Fry-Welch, D. (2001). Can proprioception really be improved by exercises? Knee Surgery, Sports Traumatology, Arthroscopy, 9(3), 128–136. doi: 10.1007/s001670100208
  • Baram, Y., & Miller, A. (2006). Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology, 66(2), 178–181. doi: 10.1212/01.wnl.0000194255.82542.6b
  • Caro, K., Tentori, M., Martinez-Garcia, A. I., & Zavala-Ibarra, I. (2017). Froggybobby: An exergame to support children with motor problems practicing motor coordination exercises during therapeutic interventions. Computers in Human Behavior, 71, 479–498. doi: 10.1016/j.chb.2015.05.055
  • Carpinella, I., Cattaneo, D., Bertoni, R., & Ferrarin, M. (2012). Robot training of upper limb in multiple sclerosis: Comparing protocols with or withoutmanipulative task components. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(3), 351–360. doi: 10.1109/TNSRE.2012.2187462
  • Carroll, T. J., Benjamin, B., Stephan, R., & Carson, R. G. (2001). Resistance training enhances the stability of sensorimotor coordination. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1464), 221–227. doi: 10.1098/rspb.2000.1356
  • Cho, G. H., Hwangbo, G., & Shin, H. S. (2014). The effects of virtual reality-based balance training on balance of the elderly. Journal of Physical Therapy Science, 26(4), 615–617. doi: 10.1589/jpts.26.615
  • Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98–101. doi:10.1111/1467-8721.ep10768783
  • dos Santos, L. F., Christ, O., Mate, K., Schmidt, H., Krüger, J., & Dohle, C. (2016). Movement visualisation in virtual reality rehabilitation of the lower limb: A systematic review. Biomedical Engineering Online, 15(3), 144. doi: 10.1186/s12938-016-0289-4
  • Eftekharsadat, B., Babaei-Ghazani, A., Mohammadzadeh, M., Talebi, M., Eslamian, F., & Azari, E. (2015). Effect of virtual reality-based balance training in multiple sclerosis. Neurological Research, 37(6), 539–544. doi: 10.1179/1743132815Y.0000000013
  • Flynn, S., Palma, P., & Bender, A. (2007). Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: A case report. Journal of Neurologic Physical Therapy, 31(4), 180–189. doi: 10.1097/NPT.0b013e31815d00d5
  • Grealy, M. A., Johnson, D. A., & Rushton, S. K. (1999). Improving cognitive function after brain injury: The use of exercise and virtual reality. Archives of Physical Medicine and Rehabilitation, 80(6), 661–667. doi: 10.1016/s0003-9993(99)90169-7
  • Harris, K., & Reid, D. (2005). The influence of virtual reality play on children's motivation. Canadian Journal of Occupational Therapy, 72(1), 21–29. doi: 10.1177/000841740507200107
  • Hwang, J., & Lee, S. (2017). The effect of virtual reality program on the cognitive function and balance of the people with mild cognitive impairment. Journal of Physical Therapy Science, 29(8), 1283–1286. doi: 10.1589/jpts.29.1283
  • Jackson, G., Jackson, S., Newport, R., & Harvey, M. (2002). Co-ordination of bimanual movements in a centrally deafferented patient executing open loop reach-to-grasp movements. Acta Psychologica, 110(2-3), 231–246. doi: 10.1016/S0001-6918(02)00035-5
  • Jonsdottir, J., Bertoni, R., Lawo, M., Montesano, A., Bowman, T., & Gabrielli, S. (2018). Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlled pilot study. Multiple Sclerosis and Related Disorders, 19, 25–29. doi: 10.1016/j.msard.2017.10.010
  • Kelso, J. (1997). Relative timing in brain and behavior: Some observations about the generalized motor program and self-organized coordination dynamics. Human Movement Science, 16(4), 453–460. doi: 10.1016/S0167-9457(96)00044-9
  • Kelso, J. S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology, 246(6 Pt 2), doi: 10.1152/ajpregu.1984.246.6.R1000
  • Laidlaw, D., Abbott, A., & Rosser, D. (2003). Development of a clinically feasible logMAR alternative to the Snellen chart: Performance of the “compact reduced logMAR” visual acuity chart in amblyopic children. British Journal of Ophthalmology, 87(10), 1232–1234. doi: 10.1136/bjo.87.10.1232
  • Lamers, I., Maris, A., Severijns, D., Dielkens, W., Geurts, S., Van Wijmeersch, B., & Feys, P. (2016). Upper limb rehabilitation in people with multiple sclerosis: A systematic review. Neurorehabilitation and Neural Repair, 30(8), 773–793. doi: 10.1177/1545968315624785
  • Lee, T. D. (2004). Intention in bimanual coordination performance and learning. In V. K. Jirsa & J. A. S. Kelso (Eds.), Coordination dynamics: Issues and trends (pp. 41–56). Berlin: Springer.
  • Levin, M. F., Knaut, L., Magdalon, E. C., & Subramanian, S. (2009). Virtual reality environments to enhance upper limb functional recovery in patients with hemiparesis. Studies in Health Technology Informatics, Advanced Technologies in Rehabilitation, 145(94), 108. doi: 10.3233/978-1-60750-018-6-94
  • Lozano-Quilis, J.-A., Gil-Gomez, H., Gil-Gómez, J.-A., Albiol-Perez, S., Palacios, G., Fardoum, H. M., & Mashat, A. S. (2013). Virtual reality system for multiple sclerosis rehabilitation using KINECT. Paper presented at the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops.
  • Massetti, T., Trevizan, I. L., Arab, C., Favero, F. M., Ribeiro-Papa, D. C., & de Mello Monteiro, C. B. (2016). Virtual reality in multiple sclerosis–a systematic review. Multiple Sclerosis and Related Disorders, 8, 107–112. doi: 10.1016/j.msard.2016.05.014
  • McGowan, K., Gunn, S. M., Vorobeychik, G., & Marigold, D. S. (2017). Short-Term motor learning and retention during visually guided Walking in persons With multiple sclerosis. Neurorehabilitation and Neural Repair, 31(7), 648–656. doi: 10.1177/1545968317712472
  • Meldrum, D., Herdman, S., Vance, R., Murray, D., Malone, K., Duffy, D., … McConn-Walsh, R. (2015). Effectiveness of conventional versus virtual reality–based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: Results of a randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 96(7), 1319–1328.e1. doi: 10.1016/j.apmr.2015.02.032
  • Murcia-López, M., & Steed, A. (2018). A comparison of virtual and physical training transfer of bimanual assembly tasks. IEEE Transactions on Visualization and Computer Graphics, 24(4), 1574–1583. doi: 10.1109/TVCG.2018.2793638
  • Norouzi, E., Hossieni, F., & Solymani, M. (2018). Effects of Neurofeedback training on performing bimanual coordination In-phase and anti-phase patterns in children with ADHD. Applied Psychophysiology and Biofeedback, 43(4), 283–292. doi: 10.1007/s10484-018-9408-2
  • Noseworthy, J., Lucchinetti, C., & Rodriguez, M. w. B. (2000). Multiple sclerosis. New England Journal of Medicine, 343, 938–952. doi: 10.1056/NEJM200009283431307
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4
  • Ortiz-Gutiérrez, R., Cano-de-la-Cuerda, R., Galán-del-Río, F., Alguacil-Diego, I., Palacios-Ceña, D., & Miangolarra-Page, J. (2013). A telerehabilitation program improves postural control in multiple sclerosis patients: A Spanish preliminary study. International Journal of Environmental Research and Public Health, 10(11), 5697–5710. doi: 10.3390/ijerph10115697
  • Polman, C. H., & Rudick, R. A. (2010). The multiple sclerosis functional composite: A clinically meaningful measure of disability. Neurology, 74(17 Supplement 3), S8–S15. doi: 10.1212/WNL.0b013e3181dbb571
  • Rojas, J. I., Romano, M., Patrucco, L., & Cristiano, E. (2018). A systematic review about the epidemiology of primary progressive multiple sclerosis in Latin America and the Caribbean. Multiple Sclerosis and Related Disorders, 22, 1–7. doi: 10.1016/j.msard.2018.02.024
  • Rose, F., Attree, E. A., Brooks, B., Parslow, D., & Penn, P. (2000). Training in virtual environments: Transfer to real world tasks and equivalence to real task training. Ergonomics, 43(4), 494–511. doi: 10.1080/001401300184378
  • Salter, J. E., Wishart, L. R., Lee, T. D., & Simon, D. (2004). Perceptual and motor contributions to bimanual coordination. Neuroscience Letters, 363(2), 102–107. doi: 10.1016/j.neulet.2004.03.071
  • Sampson, P., Freeman, C., Coote, S., Demain, S., Feys, P., Meadmore, K., & Hughes, A.-M. (2016). Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(2), 235–248. doi: 10.1109/TNSRE.2015.2413906
  • Sarlegna, F. R., Malfait, N., Bringoux, L., Bourdin, C., & Vercher, J.-L. (2010). Force-field adaptation without proprioception: Can vision be used to model limb dynamics? Neuropsychologia, 48(1), 60–67. doi: 10.1016/j.neuropsychologia.2009.08.011
  • Serrien, D. J., Teasdale, N., Bard, C., & Fleury, M. (1995). The adaptation to sensory information in the production of bimanual movement patterns. Human Movement Science, 14(6), 695–710. doi: 10.1016/0167-9457(95)00031-3
  • Shumway-Cook, A., & Woollacott, M. H. (2001). Motor control: Theory and practical applications. Philadelphia: Lippincott Williams & Wilkins.
  • Song, C., Seo, S., & Lee, G. (2010). Video game-based exercise for upper extremity function rehabilitation of chronic stroke patients: Results from a randomized, controlled, single-blind trial: po20271. International Journal of Stroke, 5, 304.
  • Straker, L. M., Campbell, A. C., Jensen, L. M., Metcalf, D. R., Smith, A. J., Abbott, R. A., … Piek, J. P. (2011). Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health, 11(1), 654. doi: 10.1186/1471-2458-11-654
  • Swinnen, S., Dounskaia, N., Verschueren, S., Serrien, D., & Daelman, A. (1990). Relative phase destabilization during interlimb coordination: The disruptive role of kinesthetic afferences induced by passive movement. Experimental Brain Research, 105(3), 439–454. doi: 10.1007/BF00233044
  • Thompson, K., Mikesky, A., Bahamonde, R. E., & Burr, D. B. (2003). Effects of physical training on proprioception in older women. Journal of Musculoskeletal Neuronal Interaction, 3(3), 223–231.
  • Vernadakis, N., Papastergiou, M., Zetou, E., & Antoniou, P. (2015). The impact of an exergame-based intervention on children's fundamental motor skills. Computers & Education, 83, 90–102. doi: 10.1016/j.compedu.2015.01.001
  • Williams, B., Doherty, N. L., Bender, A., Mattox, H., & Tibbs, J. R. (2011). The effect of Nintendo Wii on balance: A pilot study supporting the use of the Wii in occupational therapy for the well elderly. Occupational Therapy in Health Care, 25(2-3), 131–139. doi: 10.3109/07380577.2011.560627
  • Wüest, S., van de Langenberg, R., & de Bruin, E. D. (2014). Erratum to: Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. European Review of Aging and Physical Activity, 11(2), 131–131. doi: 10.1007/s11556-014-0142-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.