1,936
Views
3
CrossRef citations to date
0
Altmetric
Articles

Navigation ability in patients with acquired brain injury: A population-wide online study

ORCID Icon, ORCID Icon, &
Pages 1405-1428 | Received 26 Jun 2020, Accepted 17 Feb 2021, Published online: 14 Mar 2021

References

  • Aben, L., Ponds, R. W., Heijenbrok-Kal, M. H., Visser, M. M., Busschbach, J. J., & Ribbers, G. M. (2011). Memory complaints in chronic stroke patients are predicted by memory self-efficacy rather than memory capacity. Cerebrovascular Diseases, 31(6), 566–572. https://doi.org/10.1159/000324627
  • Austin, P. C. (2011a). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46(3), 399–424. https://doi.org/10.1080/00273171.2011.568786
  • Austin, P. C. (2011b). Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics, 10(2), 150–161. https://doi.org/10.1002/pst.433
  • Barrash, J., Damasio, H., Adolphs, R., & Tranel, D. (2000). The neuroanatomical correlates of route learning impairment. Neuropsychologia, 38(6), 820–836. https://doi.org/10.1016/S0028-3932(99)00131-1
  • Blajenkova, O., Motes, M. A., & Kozhevnikov, M. (2005). Individual differences in the representations of novel environments. Journal of Environmental Psychology, 25(1), 97–109. https://doi.org/10.1016/j.jenvp.2004.12.003
  • Boccia, M., Nemmi, F., & Guariglia, C. (2014). Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24(2), 236–251. https://doi.org/10.1007/s11065-014-9247-8
  • Borgaro, S. R., Baker, J., Wethe, J. V., Prigatano, G. P., & Kwasnica, C. (2005). Subjective reports of fatigue during early recovery from traumatic brain injury. The Journal of Head Trauma Rehabilitation, 20(5), 416–425. https://doi.org/10.1097/00001199-200509000-00003
  • Brown, T. I., Hasselmo, M. E., & Stern, C. E. (2014). A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory. Hippocampus, 24(7), 819–839. https://doi.org/10.1002/hipo.22273
  • Bullens, J., Iglói, K., Berthoz, A., Postma, A., & Rondi-Reig, L. (2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107(3), 337–350. https://doi.org/10.1016/j.jecp.2010.05.010
  • Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. https://doi.org/10.1016/j.tics.2006.10.005
  • Castelli, L., Corazzini, L. L., & Geminiani, G. C. (2008). Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Computers in Human Behavior, 24(4), 1643–1667. https://doi.org/10.1016/j.chb.2007.06.005
  • Cattelani, R., Zettin, M., & Zoccolotti, P. (2010). Rehabilitation treatments for adults with behavioral and psychosocial disorders following acquired brain injury: A systematic review. Neuropsychology Review, 20(1), 52–85. https://doi.org/10.1007/s11065-009-9125-y
  • Chan, E., Baumann, O., Bellgrove, M., & Mattingley, J. (2012). From objects to landmarks: The function of visual location information in spatial navigation. Frontiers in Psychology, 3(304), https://doi.org/10.3389/fpsyg.2012.00304
  • Chrastil, E. R., & Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 1520. https://doi.org/10.1037/a0032382
  • Chrastil, E. R., & Warren, W. H. (2015). Active and passive spatial learning in human navigation: Acquisition of graph knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1162. https://doi.org/10.1037/xlm0000082
  • Claessen, M. H., & van der Ham, I. J. (2017). Classification of navigation impairment: A systematic review of neuropsychological case studies. Neuroscience & Biobehavioral Reviews, 73, 81–97. https://doi.org/10.1016/j.neubiorev.2016.12.015
  • Claessen, M. H., Visser-Meily, J. M., de Rooij, N. K., Postma, A., & van der Ham, I. J. (2016). The wayfinding questionnaire as a self-report screening instrument for navigation-related complaints after stroke: Internal validity in healthy respondents and chronic mild stroke patients. Archives of Clinical Neuropsychology, 31(8), 839–854. https://doi.org/10.1093/arclin/acw044
  • Claessen, M. H., Visser-Meily, J. M., Meilinger, T., Postma, A., de Rooij, N. K., & van der Ham, I. J. (2017). A systematic investigation of navigation impairment in chronic stroke patients: Evidence for three distinct types. Neuropsychologia, 103, 154–161. https://doi.org/10.1016/j.neuropsychologia.2017.07.001
  • Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience & Biobehavioral Reviews, 80, 605–621. https://doi.org/10.1016/j.neubiorev.2017.07.012
  • Duits, A., Munnecom, T., van Heugten, C., & van Oostenbrugge, R. J. (2008). Cognitive complaints in the early phase after stroke are not indicative of cognitive impairment. Journal of Neurology, Neurosurgery & Psychiatry, 79(2), 143–146. https://doi.org/10.1136/jnnp.2007.114595
  • Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–188. https://doi.org/10.1038/nature01964
  • Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–396. https://doi.org/10.1016/j.tics.2008.07.004
  • Epstein, R., DeYoe, E. A., Press, D. Z., Rosen, A. C., & Kanwisher, N. (2001). Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cognitive Neuropsychology, 18(6), 481–508. https://doi.org/10.1080/02643290125929
  • Gramann, K., Müller, H. J., Schönebeck, B., & Debus, G. (2006). The neural basis of ego- and allocentric reference frames in spatial navigation: Evidence from spatio-temporal coupled current density reconstruction. Brain Research, 1118(1), 116–129. https://doi.org/10.1016/j.brainres.2006.08.005
  • Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404. https://doi.org/10.1038/73980
  • Häggström, A., & Lund, M. L. (2008). The complexity of participation in daily life: A qualitative study of the experiences of persons with acquired brain injury. Journal of Rehabilitation Medicine, 40(2), 89–95. https://doi.org/10.2340/16501977-0138
  • Hansen, B. B., & Bowers, J. (2008). Covariate balance in simple, stratified and clustered comparative studies. Statistical Science, 23(2), 219–236. https://doi.org/10.1214/08-STS254
  • Herdman, K. A., Calarco, N., Moscovitch, M., Hirshhorn, M., & Rosenbaum, R. S. (2015). Impoverished descriptions of familiar routes in three cases of hippocampal/medial temporal lobe amnesia. Cortex, 71, 248–263. https://doi.org/10.1016/j.cortex.2015.06.008
  • Hirayama, K., Taguchi, Y., Sato, M., & Tsukamoto, T. (2003). Limbic encephalitis presenting with topographical disorientation and amnesia. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 110–112. https://doi.org/10.1136/jnnp.74.1.110
  • Iacus, S. M., King, G., & Porro, G. (2009). CEM: software for coarsened exact matching.
  • Iaria, G., Chen, J., Guariglia, C., Ptito, A., & Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: Complementary functional contributions to the formation and use of cognitive maps. European Journal of Neuroscience, 25(3), 890–899. https://doi.org/10.1111/j.1460-9568.2007.05371.x
  • Iglói, K., Zaoui, M., Berthoz, A., & Rondi-Reig, L. (2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19(12), 1199–1211. https://doi.org/10.1002/hipo.20595
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. https://doi.org/10.1016/j.cogpsych.2005.08.003
  • Jacobs, J., Korolev, I. O., Caplan, J. B., Ekstrom, A. D., Litt, B., Baltuch, G., Fried, I., Schulze-Bonhage, A., Madsen, J. R., & Kahana, M. J. (2010). Right-lateralized brain oscillations in human spatial navigation. Journal of Cognitive Neuroscience, 22(5), 824–836. https://doi.org/10.1162/jocn.2009.21240
  • Janzen, G., & Jansen, C. (2010). A neural wayfinding mechanism adjusts for ambiguous landmark information. Neuroimage, 52(1), 364–370. https://doi.org/10.1016/j.neuroimage.2010.03.083
  • Janzen, G., & Van Turennout, M. (2004). Selective neural representation of objects relevant for navigation. Nature Neuroscience, 7(6), 673. https://doi.org/10.1038/nn1257
  • Johnson, K., & Davis, P. K. (1998). A supported relationships intervention to increase the social integration of persons with traumatic brain injuries. Behavior Modification, 22(4), 502–528. https://doi.org/10.1177/01454455980224004
  • Juliani, A. W., Bies, A. J., Boydston, C. R., Taylor, R. P., & Sereno, M. E. (2016). Navigation performance in virtual environments varies with fractal dimension of landscape. Journal of Environmental Psychology, 47, 155–165. https://doi.org/10.1016/j.jenvp.2016.05.011
  • Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. Wender (Eds.), Spatial cognition (pp. 1–17). Springer. https://doi.org/10.1007/3-540-69342-4_1
  • Lamb, F., Anderson, J., Saling, M., & Dewey, H. (2013). Predictors of subjective cognitive complaint in postacute older adult stroke patients. Archives of Physical Medicine and Rehabilitation, 94(9), 1747–1752. https://doi.org/10.1016/j.apmr.2013.02.026
  • Landis, T., Cummings, J. L., Benson, D. F., & Palmer, E. P. (1986). Loss of topographic familiarity: An environmental agnosia. Archives of Neurology, 43(2), 132–136. https://doi.org/10.1001/archneur.1986.00520020026011
  • Lloyd, J., Persaud, N. V., & Powell, T. E. (2009). Equivalence of real-world and virtual-reality route learning: A pilot study. Cyberpsychology & Behavior, 12(4), 423–427. https://doi.org/10.1089/cpb.2008.0326
  • Logan, P. A., Gladman, J. R. F., Avery, A., Walker, M. F., Dyas, J., & Groom, L. (2004). Randomised controlled trial of an occupational therapy intervention to increase outdoor mobility after stroke. BMJ (Clinical Research ed.), 329(7479), 1372–1375. https://doi.org/10.1136/bmj.38264.679560.8F
  • Maguire, E. A., Frackowiak, R. S., & Frith, C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers. Journal of Neuroscience, 17(18), 7103–7110. https://doi.org/10.1523/JNEUROSCI.17-18-07103.1997
  • Maguire, E. A., Nannery, R., & Spiers, H. J. (2006). Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain, 129(11), 2894–2907. https://doi.org/10.1093/brain/awl286
  • Mendez, M. F., & Cherrier, M. M. (2003). Agnosia for scenes in topographagnosia. Neuropsychologia, 41(10), 1387–1395. https://doi.org/10.1016/S0028-3932(03)00041-1
  • Milders, M., Fuchs, S., & Crawford, J. R. (2003). Neuropsychological impairments and changes in emotional and social behaviour following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 25(2), 157–172. https://doi.org/10.1076/jcen.25.2.157.13642
  • Moffat, S. D., Zonderman, A. B., & Resnick, S. M. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22(5), 787–796. https://doi.org/10.1016/S0197-4580(01)00251-2
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Nys, M., Hickmann, M., & Gyselinck, V. (2018). The role of verbal and visuo-spatial working memory in the encoding of virtual routes by children and adults. Journal of Cognitive Psychology, 30(7), 710–727. https://doi.org/10.1080/20445911.2018.1523175
  • Péruch, P., Belingard, L., & Thinus-Blanc, C. (2000). Transfer of spatial knowledge from virtual to real environments. In C. Freksa, C. Bauer, C. Habel, & K. Wender (Eds.), Spatial Cognition II, LNAI 1849 (pp. 253–264). Springer. https://doi.org/10.1007/3-540-45460-8_19
  • Qiu, W. Q., Dean, M., Liu, T., George, L., Gann, M., Cohen, J., & Bruce, M. L. (2010). Physical and mental health of homebound older adults: An overlooked population. Journal of the American Geriatrics Society, 58(12), 2423–2428. https://doi.org/10.1111/j.1532-5415.2010.03161.x
  • Rees, L., Marshall, S., Hartridge, C., Mackie, D., & Weiser, M. (2007). Cognitive interventions post acquired brain injury. Brain Injury, 21(2), 161–200. https://doi.org/10.1080/02699050701201813
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. https://doi.org/10.3758/BF03211566
  • Riese, H. (1999). Mental fatigue after very severe closed head injury: Sustained performance, mental effort, and distress at two levels of workload in a driving simulator. Neuropsychological Rehabilitation, 9(2), 189–205. https://doi.org/10.1080/713755600
  • RIVM. (2016). Overzicht hersenaandoeningen. https://www.volksgezondheidenzorg.info/bestanden/documenten/overzichthersenaandoeningendefinitiefxlsx
  • Rosenbaum, R. S., Priselac, S., Köhler, S., Black, S. E., Gao, F., Nadel, L., & Moscovitch, M. (2000). Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nature Neuroscience, 3(10), 1044–1048. https://doi.org/10.1038/79867
  • Schipper, K., Visser-Meily, J. M., Hendrikx, A., & Abma, T. A. (2011). Participation of people with acquired brain injury: Insiders perspectives. Brain Injury, 25(9), 832–843. https://doi.org/10.3109/02699052.2011.589796
  • Shelton, A. L., & Gabrieli, J. D. E. (2002). Neural correlates of encoding space from route and survey perspectives. The Journal of Neuroscience, 22(7), 2711–2717. https://doi.org/10.1523/jneurosci.22-07-02711.2002
  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior (Vol. 10) (pp. 9–55). JAI.
  • Sohlberg, M. M., Todis, B., Fickas, S., Hung, P.-F., & Lemoncello, R. (2005). A profile of community navigation in adults with chronic cognitive impairments. Brain Injury, 19(14), 1249–1259. https://doi.org/10.1080/02699050500309510
  • Sorita, E., N’Kaoua, B., Larrue, F., Criquillon, J., Simion, A., Sauzéon, H., Joseph, P.-A., & Mazaux, J.-M. (2013). Do patients with traumatic brain injury learn a route in the same way in real and virtual environments? Disability and Rehabilitation, 35(16), 1371–1379. https://doi.org/10.3109/09638288.2012.738761
  • Sorrows, M. E., & Hirtle, S. C. (1999, August). The nature of landmarks for real and electronic spaces. In C. Freksa & D. M. Mark (Eds.), Spatial information theory. Cognitive and computational foundations of geographic information science (pp. 37–50). Springer. https://doi.org/10.1007/3-540-48384-5_3
  • Spencer, R. J., Drag, L. L., Walker, S. J., & Bieliauskas, L. A. (2010). Self-reported cognitive symptoms following mild traumatic brain injury are poorly associated with neuropsychological performance in OIF/OEF veterans. Journal of Rehabilitation Research & Development, 47(6). https://doi.org/10.1682/JRRD.2009.11.0181
  • Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence: Teleoperators & Virtual Environments, 9(1), 69–83. https://doi.org/10.1162/105474600566628
  • Stulemeijer, M., Vos, P. E., Bleijenberg, G., & Van der Werf, S. P. (2007). Cognitive complaints after mild traumatic brain injury: Things are not always what they seem. Journal of Psychosomatic Research, 63(6), 637–645. https://doi.org/10.1016/j.jpsychores.2007.06.023
  • Takahashi, N., & Kawamura, M. (2002). Pure topographical disorientation—the anatomical basis of landmark agnosia. Cortex, 38(5), 717–725. https://doi.org/10.1016/S0010-9452(08)70039-X
  • Thoemmes, F. (2012). Propensity score matching in SPSS. arXiv preprint arXiv:1201.6385.
  • Tibæk, M., Kammersgaard, L. P., Johnsen, S. P., Dehlendorff, C., & Forchhammer, H. B. (2018). Long-term return to work after acquired brain injury in young danish adults: A nation-wide registry-based cohort study. Frontiers in Neurology, 9, 1180. https://doi.org/10.3389/fneur.2018.01180
  • Turner-Strokes, L. (2003). Rehabilitation following acquired brain injury: national clinical guidelines.
  • Turriziani, P., Carlesimo, G. A., Perri, R., Tomaiuolo, F., & Caltagirone, C. (2003). Loss of spatial learning in a patient with topographical disorientation in new environments. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 61–69. https://doi.org/10.1136/jnnp.74.1.61
  • van der Ham, I. J., Claessen, M. H., Evers, A. W., & van der Kuil, M. N. (2020). Large-scale assessment of human navigation ability across the lifespan. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-60302-0
  • van der Ham, I. J., Kant, N., Postma, A., & Visser-Meily, J. (2013). Is navigation ability a problem in mild stroke patients? Insights from self-reported navigation measures. Journal of Rehabilitation Medicine, 45(5), 429–433. https://doi.org/10.2340/16501977-1139
  • van der Ham, I. J., van Zandvoort, M. J., Meilinger, T., Bosch, S. E., Kant, N., & Postma, A. (2010). Spatial and temporal aspects of navigation in two neurological patients. Neuroreport, 21(10), 685–689. https://doi.org/10.1097/WNR.0b013e32833aea78
  • Van Heugten, C., Rasquin, S., Winkens, I., Beusmans, G., & Verhey, F. (2007). Checklist for cognitive and emotional consequences following stroke (CLCE-24): development, usability and quality of the self-report version. Clinical Neurology and Neurosurgery, 109(3), 257–262. https://doi.org/10.1016/j.clineuro.2006.10.002
  • Van Velzen, J. M., Van Bennekom, C. A. M., Edelaar, M. J. A., Sluiter, J. K., & Frings-Dresen, M. H. W. (2009). How many people return to work after acquired brain injury?: A systematic review. Brain Injury, 23(6), 473–488. https://doi.org/10.1080/02699050902970737
  • Verhage, F. (1964). Intelligence and age: Study with Dutch people aged 12-77. Van Gorcum.
  • Wade, S. L., Bedell, G., King, J. A., Jacquin, M., Turkstra, L. S., Haarbauer-Krupa, J., Johnson, J., Salloum, R., & Narad, M. E. (2018). Social participation and navigation (SPAN) program for adolescents with acquired brain injury: Pilot findings. Rehabilitation Psychology, 63(3), 327. https://doi.org/10.1037/rep0000187
  • Wechsler, D., & Scale—Revised, WMS-R Wechsler Memory. (1987). Manual. The Psychological Corporation. In: Harcourt Brace Jovanovich Inc.
  • Wen, W., Ishikawa, T., & Sato, T. (2013). Individual differences in the encoding processes of egocentric and allocentric survey knowledge. Cognitive Science, 37(1), 176–192. https://doi.org/10.1111/cogs.12005
  • Wiener, J. M., Carroll, D., Moeller, S., Bibi, I., Ivanova, D., Allen, P., & Wolbers, T. (2019). A novel virtual-reality-based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behavior Research Methods. https://doi.org/10.3758/s13428-019-01264-8
  • Wilson, B. A., Evans, J. J., Alderman, N., Burgess, P. W., & Emslie, H. (1997). Behavioural assessment of the dysexecutive syndrome. In P. Rabbit (Ed.), Methodology of frontal and executive function (pp. 239–250). Psychology Press Ltd.
  • Winkens, I., Van Heugten, C. M., Fasotti, L., & Wade, D. T. (2009). Reliability and validity of two new instruments for measuring aspects of mental slowness in the daily lives of stroke patients. Neuropsychological Rehabilitation, 19(1), 64–85. https://doi.org/10.1080/09602010801913650
  • Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. https://doi.org/10.1016/j.tics.2010.01.001
  • Xie, Y., Bigelow, R. T., Frankenthaler, S. F., Studenski, S. A., Moffat, S. D., & Agrawal, Y. (2017). Vestibular loss in older adults is associated with impaired spatial navigation: Data from the triangle completion task. Frontiers in Neurology, 8, 173. https://doi.org/10.3389/fneur.2017.00173
  • Zhong, J. Y., & Kozhevnikov, M. (2016). Relating allocentric and egocentric survey-based representations to the self-reported use of a navigation strategy of egocentric spatial updating. Journal of Environmental Psychology, 46, 154–175. https://doi.org/10.1016/j.jenvp.2016.04.007
  • Zwecker, M., Levenkrohn, S., Fleisig, Y., Zeilig, G., Ohry, A., & Adunsky, A. (2002). Mini-mental state examination, cognitive FIM instrument, and the Loewenstein occupational therapy cognitive assessment: Relation to functional outcome of stroke patients. Archives of Physical Medicine and Rehabilitation, 83(3), 342–345. https://doi.org/10.1053/apmr.2002.29641