278
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Null cross-modal effects of olfactory training on visual, auditory or olfactory working memory in 6- to 9-year-old children

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Received 20 Dec 2023, Accepted 04 Apr 2024, Published online: 19 May 2024

References

  • Al Aïn, S., Poupon, D., Hétu, S., Mercier, N., Steffener, J., & Frasnelli, J. (2019). Smell training improves olfactory function and alters brain structure. NeuroImage, 189, 45–54. https://doi.org/10.1016/j.neuroimage.2019.01.008
  • Alesi, M., Bianco, A., Luppina, G., Palma, A., & Pepi, A. (2016). Improving children’s coordinative skills and executive functions. Perceptual and Motor Skills, 122(1), 27–46. https://doi.org/10.1177/0031512515627527
  • Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. A. (2019). Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Research, 4, 63. https://doi.org/10.12688/wellcomeopenres.15191.1
  • Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559. https://doi.org/10.1126/science.1736359
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
  • Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annals of the New York Academy of Sciences, 1118(1), 122–141. https://doi.org/10.1196/annals.1412.011
  • Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: Insights from spatial processing. Nature Reviews Neuroscience, 9(3), 182–194. https://doi.org/10.1038/nrn2335
  • Broglio, K. (2018). Randomization in clinical trials. JAMA, 319(21), 2223–2224. https://doi.org/10.1001/jama.2018.6360
  • Bryck, R. L., & Fisher, P. A. (2012). Training the brain: Practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science. American Psychologist, 67(2), 87–100. https://doi.org/10.1037/a0024657
  • Bull, R., Espy, K. A., & Senn, T. E. (2004). A comparison of performance on the towers of London and Hanoi in young children. Journal of Child Psychology and Psychiatry, 45(4), 743–754. https://doi.org/10.1111/j.1469-7610.2004.00268.x
  • Casey, B. J., Tottenhan, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9(3), 104–110. https://doi.org/10.1016/j.tics.2005.01.011
  • Cortés Pascual, A., Moyano Muñoz, N., & Quílez Robres, A. (2019). The relationship between executive functions and academic performance in primary education: Review and meta-analysis. Frontiers in Psychology, 10, Article 1582. https://doi.org/10.3389/fpsyg.2019.01582
  • Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. Y. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1), 57–70. https://doi.org/10.1016/J.brainresrev.2007.10.012
  • Dahmani, L., Patel, R. M., Yang, Y., Chakravarty, M. M., Fellows, L. K., & Bohbot, V. D. (2018). An intrinsic association between olfactory identification and spatial memory in humans. Nature Communications, 9(1), 4162. https://doi.org/10.1038/s41467-018-06569-4
  • D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115–142. https://doi.org/10.1146/annurev-psych-010814-015031
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
  • Dumville, J. C., Hahn, S., Miles, J. N. V., & Torgerson, D. J. (2006). The use of unequal randomisation ratios in clinical trials: A review. Contemporary Clinical Trials, 27(1), 1–12. https://doi.org/10.1016/j.cct.2005.08.003
  • Erickson, K. I., Hillman, C. H., & Kramer, A. F. (2015). Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences, 4, 27–32. https://doi.org/10.1016/j.cobeha.2015.01.005
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behaviour Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146
  • Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105–118. https://doi.org/10.1038/nrn2979
  • Freiherr, J. (2017). Cortical olfactory processing. In A. Buttner (Ed.), Handbook Of odor (pp. 759–768). Springer Nature.
  • Gellrich, J., Han, P., Manesse, C., Betz, A., Junghanns, A., Raue, C., Schriever, V. A., & Hummel, T. (2018). Brain volume changes in hyposmic patients before and after olfactory training. The Laryngoscope, 128(7), 1531–1536. https://doi.org/10.1002/lary.27045
  • Gellrich, J., Sparing-Paschke, L.-M., Hummel, T., & Schriever, V. A. (2021). The influence of cognitive parameters on olfactory assessment in healthy children and adolescents. Chemical Senses, 46, bjaa072. https://doi.org/10.1093/chemse/bjaa072
  • Gellrich, J., Sparing-Paschke, L. M., Thieme, T., Schwabe, K., Dworschak, A., Hummel, T., & Schriever, V. A. (2019). Normative data for olfactory threshold and odor identification in children and adolescents. International Journal of Pediatric Otorhinolaryngology, 123, 5–9. https://doi.org/10.1016/J.ijporl.2019.01.009
  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101
  • Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11(9), 628–641. https://doi.org/10.1038/nrn2883
  • Han, P., Musch, M., Abolmaali, N., & Hummel, T. (2021). Improved odor identification ability and increased regional gray matter volume after olfactory training in patients with idiopathic olfactory loss. I-Perception, 12(2), 1–11. https://doi.org/10.1177/20416695211005811
  • Han, P., Zang, Y., Akshita, J., & Hummel, T. (2019). Magnetic resonance imaging of human olfactory dysfunction. Brain Topography, 32(6), 987–997. https://doi.org/10.1007/s10548-019-00729-5
  • Herz, R. S., & Engen, T. (1996). Odor memory: Review and analysis. Psychonomic Bulletin & Review, 3(3), 300–313. https://doi.org/10.3758/bf03210754
  • Hosseini, K., Zare-Sadeghi, A., Sadigh-Eteghad, S., Mirsalehi, M., & Khezerloo, D. (2020). Effects of olfactory training on restingstate effective connectivity in patients with posttraumatic olfactory dysfunction. Acta Neurobiologiae Experimentalis, 80(4), 381–388. https://doi.org/10.21307/ane2020035
  • Huang, T., Wei, Y., & Wu, D. (2021). Effects of olfactory training on posttraumatic olfactory dysfunction: A systematic review and meta-analysis. International Forum of Allergy & Rhinology, 11(7), 1102–1112. https://doi.org/10.1002/alr.22758
  • Hummel, T., Rissom, K., Reden, J., Hähner, A., Weidenbecher, M., & Hüttenbrink, K. B. (2009). Effects of olfactory training in patients with olfactory loss. The Laryngoscope, 119(3), 496–499. https://doi.org/10.1002/lary.20101
  • Hummel, T., Stupka, G., Haehner, A., & Poletti, S. C. (2018). Olfactory training changes electrophysiological responses at the level of the olfactory epithelium. Rhinology Journal, 56(4), 330–335. https://doi.org/10.4193/Rhin17.163
  • Jacobs, L. F. (2019). The navigational nose: A new hypothesis for the function of the human external pyramid. Journal of Experimental Biology, 222(Suppl_1), jeb186924. https://doi.org/10.1242/jeb.186924
  • Jacobs, L. F. (2022). How the evolution of air breathing shaped hippocampal function. Philosophical Transactions of the Royal Society B: Biological Sciences, 377, 20200532. https://doi.org/10.1098/rstb.2020.0532
  • Jennings, J. M., Webster, L. M., Kleykamp, B. A., & Dagenbach, D. (2005). Recollection training and transfer effects in older adults: Successful Use of a repetition-Lag procedure. Aging, Neuropsychology, and Cognition, 12(3), 278–298. https://doi.org/10.1080/138255890968312
  • Jones, J. S., Milton, F., Mostazir, M., & Adlam, A. R. (2020). The academic outcomes of working memory and metacognitive strategy training in children: A double-blind randomized controlled trial. Developmental Science, 23(4), e12870. https://doi.org/10.1111/desc.12870
  • Jönsson, F. U., Møller, P., & Olsson, M. J. (2011). Olfactory working memory: Effects of verbalization on the 2-back task. Memory & Cognition, 39(6), 1023–1032. https://doi.org/10.3758/s13421-011-0080-5
  • Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C.-T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14(5), 1046–1058. https://doi.org/10.1111/j.1467-7687.2011.01054.x
  • Kattar, N., Do, T., Unis, G., Migneron, M., Thomas, A., & McCoul, E. (2021). Olfactory training for postviral olfactory dysfunction: Systematic review and meta-analysis. Otolaryngology–Head and Neck Surgery : Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 164(2), 244–254. https://doi.org/10.1177/0194599820943550
  • Kim, B. Y., Park, J. Y., Kim, E. J., & Kim, B. G. (2020). Olfactory ensheathing cells mediate neuroplastic mechanisms after olfactory training in mouse model. American Journal of Rhinology and Allergy, 34(2), 217–229. https://doi.org/10.1177/1945892419885036
  • Kollndorfer, K., Fischmeister, F. P. S., Kowalczyk, K., Hoche, E., Mueller, C. A., Trattnig, S., & Schöpf, V. (2015). Olfactory training induces changes in regional functional connectivity in patients with long-term smell loss. NeuroImage: Clinical, 9, 401–410. https://doi.org/10.1016/j.nicl.2015.09.004
  • Konstantinidis, I., Tsakiropoulou, E., Bekiaridou, P., Kazantzidou, C., & Constantinidis, J. (2013). Use of olfactory training in post-traumatic and postinfectious olfactory dysfunction. The Laryngoscope, 123(12), E85–E90. https://doi.org/10.1002/lary.24390
  • Konstantinidis, I., Tsakiropoulou, E., & Constantinidis, J. (2016). Long term effects of olfactory training in patients with post-infectious olfactory loss. Rhinology Journal, 54(2), 170–175. https://doi.org/10.4193/Rhino15.264
  • Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences, 99(20), 13336–13341. https://doi.org/10.1073/pnas.162486399
  • Lezak, M. D. (2012). Neuropsychological assessment (5th ed.). Oxford University Press.
  • Mahmut, M. K., Musch, M., Han, P., Abolmaali, N., & Hummel, T. (2020a). The effect of olfactory training on olfactory bulb volumes in patients with idiopathic olfactory loss. Rhinology, 58(4), 412–415. https://doi.org/10.4193/Rhin20.223
  • Mahmut, M. K., Oelschlägel, A., Haehner, A., & Hummel, T. (2022). The impact of olfactory training using a nasal clip and extended periods of odor exposure. Journal of Sensory Studies, 37(2), e12721. https://doi.org/10.1111/joss.12721
  • Mahmut, M. K., Pieniak, M., Resler, K., Schriever, V. A., Haehner, A., & Oleszkiewicz, A. (2021). Olfactory training in 8-year-old increases odour identification ability: A preliminary study. European Journal of Pediatrics, 180(7), 2049–2053. https://doi.org/10.1007/s00431-021-03970-y
  • Mahmut, M. K., Uecker, F. C., Göktas, Ö, Georgsdorf, W., Oleszkiewicz, A., & Hummel, T. (2020b). Changes in olfactory function after immersive exposure to odorants. Journal of Sensory Studies, 35(2), e12559. https://doi.org/10.1111/joss.12559
  • McMinn, M. R., Wiens, A. N., & Crossen, J. R. (1988). Rey auditory-verbal learning test: Development of norms for healthy young adults. Clinical Neuropsychologist, 2(1), 67–87. https://doi.org/10.1080/13854048808520087
  • Metatla, O., Bardot, S., Cullen, C., Serrano, M., & Jouffrais, C. (2020). Robots for inclusive play: Co-designing an educational game with visually impaired and sighted children. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3313831.3376270
  • Mori, E., Petters, W., Schriever, V. A., Valder, C., & Hummel, T. (2015). Exposure to odours improves olfactory function in healthy children. Rhinology journal, 53(3), 221–226. https://doi.org/10.4193/Rhino14.192
  • Negoias, S., Pietsch, K., & Hummel, T. (2017). Changes in olfactory bulb volume following lateralized olfactory training. Brain Imaging and Behaviour, 11(4), 998–1005. https://doi.org/10.1007/s11682-016-9567-9
  • Nejati, V., Khorrami, A. S., & Fonoudi, M. (2022). Neuromodulation of facial emotion recognition in health and disease: A systematic review. Neurophysiologie Clinique, 52(3), 183–201. https://doi.org/10.1016/j.neucli.2022.03.005
  • Nejati, V., Salehinejad, M. A., Nitsche, M. A., Najian, A., & Javadi, A.-H. (2020). Transcranial direct current stimulation improves executive dysfunctions in ADHD: Implications for inhibitory control, interference control, working memory, and cognitive flexibility. Journal of Attention Disorders, 24(13), 1928–1943. https://doi.org/10.1177/1087054717730611
  • Oleszkiewicz, A., Abriat, A., Doelz, G., Azema, E., & Hummel, T. (2021). Beyond olfaction: Beneficial effects of olfactory training extend to aging-related cognitive decline. Behavioral Neuroscience, 135(6), 732–740. https://doi.org/10.1037/bne0000478
  • Oleszkiewicz, A., Bottesi, L., Pieniak, M., Fujita, S., Krasteva, N., Nelles, G., & Hummel, T. (2022). Olfactory training with aromastics: Olfactory and cognitive effects. European Archives of Oto-Rhino-Laryngology, 279(1), 225–232. https://doi.org/10.1007/s00405-021-06810-9
  • Oleszkiewicz, A., Hanf, S., Whitcroft, K. L., Haehner, A., & Hummel, T. (2018a). Examination of olfactory training effectiveness in relation to its complexity and the cause of olfactory loss. The Laryngoscope, 128(7), 1518–1522. https://doi.org/10.1002/lary.26985
  • Oleszkiewicz, A., Schultheiss, T., Schriever, V. A., Linke, J., Cuevas, M., Hahner, A., & Hummel, T. (2018b). Effects of “trigeminal training” on trigeminal sensitivity and self-rated nasal patency. European Archives of Oto-Rhino-Laryngology, 275(7), 1783–1788. https://doi.org/10.1007/s00405-018-4993-5
  • Olofsson, J. K., Ekström, I., Lindström, J., Syrjänen, E., Stigsdotter-Neely, A., Nyberg, L., Jonsson, S., & Larsson, M. (2020). Smell-Based memory training: Evidence of olfactory learning and transfer to the visual domain. Chemical Senses, 45(7), 593–600. https://doi.org/10.1093/chemse/bjaa049
  • Olofsson, J. K., Niedenthal, S., Ehrndal, M., Zakrzewska, M., Wartel, A., & Larsson, M. (2017). Beyond smell-O-vision: Possibilities for smell-based digital media. Simulation and Gaming, 48(4), 455–479. https://doi.org/10.1177/1046878117702184
  • Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22(1), 81–98. https://doi.org/10.1080/09297049.2014.971726
  • Pellegrino, R., Han, P., Reither, N., & Hummel, T. (2019). Effectiveness of olfactory training on different severities of posttraumatic loss of smell. The Laryngoscope, 129(8), 1737–1743. https://doi.org/10.1002/lary.27832
  • Pieniak, M., Oleszkiewicz, A., Avaro, V., Calegari, F., & Hummel, T. (2022). Olfactory training – thirteen years of research reviewed. Neuroscience & Biobehavioral Reviews, 141, 104853. https://doi.org/10.1016/j.neubiorev.2022.104853
  • Pieniak, M., Seidel, K., Oleszkiewicz, A., Gellrich, J., Karpinski, C., Fitze, G., & Schriever, V. A. (2023). Olfactory training effects in children after mild traumatic brain injury. Brain Injury, 37(11), 1272–1284. https://doi.org/10.1080/02699052.2023.2237889
  • Poletti, S. C., Michel, E., & Hummel, T. (2017). Olfactory training using heavy and light weight molecule odors. Perception, 46(3–4), 343–351. https://doi.org/10.1177/0301006616672881
  • Rowe, A., Titterington, J., Holmes, J., Henry, L., & Taggart, L. (2019). Interventions targeting working memory in 4–11 year olds within their everyday contexts: A systematic review. Developmental Review, 52, 1–23. https://doi.org/10.1016/j.dr.2019.02.001
  • Saatci, O., Altundag, A., Duz, O. A., & Hummel, T. (2020). Olfactory training ball improves adherence and olfactory outcomes in post-infectious olfactory dysfunction. European Archives of Oto-Rhino-Laryngology, 277(7), 2125–2132. https://doi.org/10.1007/s00405-020-05939-3
  • Sala, G., & Gobet, F. (2020). Working memory training in typically developing children: A multilevel meta-analysis. Psychonomic Bulletin & Review, 27(3), 423–434. https://doi.org/10.3758/s13423-019-01681-y
  • Salehinejad, M. A., Ghanavati, E., Rashid, M. H. A., & Nitsche, M. A. (2021). Hot and cold executive functions in the brain: A prefrontal-cingular network. Brain and Neuroscience Advances, 5, 1–19. https://doi.org/10.1177/23982128211007769
  • Schriever, V. A., Agosin, E., Altundag, A., Avni, H., Cao Van, H., Cornejo, C., de los Santos, G., Fishman, G., Fragola, C., Guarneros, M., Gupta, N., Hudson, R., Kamel, R., Knaapila, A., Konstantinidis, I., Landis, B. N., Larsson, M., Lundström, J. N., Macchi, A., … Hummel, T. (2018). Development of an international odor identification test for children: The universal sniff test. The Journal of Pediatrics, 198, 265–272.e3. https://doi.org/10.1016/j.jpeds.2018.03.011
  • Schumann-Hengsteler, R. (1996). Children’s and adults’ visuospatial memory: The game concentration. The Journal of Genetic Psychology, 157(1), 77–92. https://doi.org/10.1080/00221325.1996.9914847
  • Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983
  • Sorokowska, A., Drechsler, E., Karwowski, M., & Hummel, T. (2017). Effects of olfactory training: A meta-analysis. Rhinology Journal, 55(1), 17–26. https://doi.org/10.4193/Rhino16.195
  • Spiegel, J. A., Goodrich, J. M., Morris, B. M., Osborne, C. M., & Lonigan, C. J. (2021). Relations between executive functions and academic outcomes in elementary school children: A meta-analysis. Psychological Bulletin, 147(4), 329–351. https://doi.org/10.1037/bul0000322
  • St Clair-Thompson, H., Stevens, R., Hunt, A., & & Bolder, E. (2010). Improving children’s working memory and classroom performance. An International Journal of Experimental Educational Psychology, 30(2), 203–219. https://doi.org/10.1080/01443410903509259
  • The Jamovi Project. (2023). jamovi (Version 2.3). https://www.jamovi.org
  • Uytun, M. C. (2018). Development period of prefrontal cortex. In Starcevic Ana (Ed.), Prefrontal cortex. InTech. https://doi.org/10.5772/intechopen.78697
  • Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M., & Petrovic, P. (2012). Executive functions predict the success of Top-soccer players. PLoS One, 7(4), e34731. https://doi.org/10.1371/journal.pone.0034731
  • Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory – Is younger, better? Developmental Review, 32(4), 360–387. https://doi.org/10.1016/j.dr.2012.07.001
  • Watt, W. C., Sakano, H., Lee, Z. Y., Reusch, J. E., Trinh, K., & Storm, D. R. (2004). Odorant stimulation enhances survival of olfactory sensory neurons via MAPK and CREB. Neuron, 41(6), 955–967. https://doi.org/10.1016/S0896-6273(04)00075-3
  • Wegener, B.-A., Croy, I., Hähner, A., & Hummel, T. (2018). Olfactory training with older people. International Journal of Geriatric Psychiatry, 33(1), 212–220. https://doi.org/10.1002/gps.4725
  • White, T. L. (2009). A second look at the structure of human olfactory memory. Annals of the New York Academy of Sciences, 1170(1), 338–342. https://doi.org/10.1111/j.1749-6632.2009.03878.x
  • Worthen, E. (2010). Sensory-Based interventions in the general education classroom: A critical appraisal of the topic. Journal of Occupational Therapy, Schools, & Early Intervention, 3(1), 76–94. https://doi.org/10.1080/19411241003684217
  • Wu, L., Zhang, X., Wang, J., Sun, J., Mao, F., Han, J., & Cao, F. (2021). The associations of executive functions with resilience in early adulthood: A prospective longitudinal study. Journal of Affective Disorders, 282, 1048–1054. https://doi.org/10.1016/j.jad.2021.01.031
  • Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives 6(4), 354–360.
  • Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27(5), 455–471. https://doi.org/10.3233/rnn-2009-0495