354
Views
1
CrossRef citations to date
0
Altmetric
Article

Photocatalytic oxidation of ciprofloxacin by UV/ α-Fe2O3/sulfite: mechanism, kinetic, degradation pathway

ORCID Icon, ORCID Icon, &
Pages 192-205 | Received 02 Aug 2021, Accepted 27 Nov 2021, Published online: 08 Dec 2021

References

  • Ahmadzadeh S, Asadipour A, Pournamdari M, Behnam B, Rahimi HR, Dolatabadi M. 2017. Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: optimization and modelling through response surface methodology. Process Saf Environ Prot. 109:538–547. doi:10.1016/j.psep.2017.04.026.
  • Asgari E, Hassani G, Manshouri M, Sheikhmohammadi A, Fakhri Y. 2020. Enhancement the BuP photo-catalytic degradability by UVC/ZnO through adding exogenous oxidant: mechanism, kinetic, energy consumption. J Environ Chem Eng. 8(1):103576.
  • Asgari E, Sheikhmohammadi A, Nourmoradi H, Nazari S, Aghanaghad M. 2021. Degradation of ciprofloxacin by photocatalytic ozonation process under irradiation with UVA: comparative study, performance and mechanism. Process Saf Environ Prot. 147:356–366. doi:10.1016/j.psep.2020.09.041.
  • Azarpira H, Abtahi M, Sadani M, Rezaei S, Atafar Z, Mohseni SM, Sarkhosh M, Shanbedi M, Alidadi H, Fakhri Y. 2019a. Photo-catalytic degradation of Trichlorophenol with UV/sulfite/ZnO process, simultaneous usage of homogeneous reductive and heterogeneous oxidative agents generator as a new approach of Advanced Oxidation/Reduction Processes (AO/RPs). J Photochem Photobiol A Chem. 374:43–51. doi:10.1016/j.jphotochem.2019.01.010.
  • Azarpira H, Sadani M, Abtahi M, Vaezi N, Rezaei S, Atafar Z, Mohseni SM, Sarkhosh M, Ghaderpoori M, Keramati H. 2019b. Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: performance, kinetic, degradation pathway, energy consumption and toxicology. J Photochem Photobiol A Chem. 371:423–432. doi:10.1016/j.jphotochem.2018.10.041.
  • Azizi S, Alidadi H, Maaza M, Sarkhosh M. 2020. Degradation of ofloxacin using the UV/ZnO/Iodide process in an integrated photocatalytic-biological reactor containing baffles. Ind Eng Chem Res. 59(52):22440–22450. doi:10.1021/acs.iecr.0c04431.
  • Chen M, Yao J, Huang Y, Gong H, Chu W. 2018. Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO) 2CO3 heterojunctions: efficiency, kinetics, pathways, mechanisms and toxicity evaluation. Chem Eng J. 334:453–461. doi:10.1016/j.cej.2017.10.064.
  • Costa LN, Nobre FX, de Oliveira Lobo A, de Matos JME. 2021. Photodegradation of ciprofloxacin using TiO2/SnO2 nanostructures. Environ Nanotechnol Monit Manag. 100466.
  • Deister U, Warneck P. 1990. Photooxidation of sulfite (SO32-) in aqueous solution. The Journal of Physical Chemistry. 94(5):2191–2198. doi:10.1021/j100368a084.
  • Deng J, Ge Y, Tan C, Wang H, Li Q, Zhou S, Zhang K. 2017. Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation. Chem Eng J. 330:1390–1400. doi:10.1016/j.cej.2017.07.137.
  • Ebrahimi A, Ebrahim K, Abdolahnejad A, Jafari N, Karimi M, Mohammadi A, Nikoonahad A. 2020a. Photocatalytic degradation of microcystin-LR using BiVO4 photocatalysts under visible light irradiation: modelling by response surface methodology (RSM). Int J Environ Anal Chem. 100:1–18. doi:10.1080/03067319.2020.1820498.
  • Ebrahimi A, Jafari N, Ebrahimpour K, Karimi M, Rostamnia S, Behnami A, Ghanbari R, Mohammadi A, Rahimi B, Abdolahnejad A. 2021. A novel ternary heterogeneous TiO2/BiVO4/NaY-Zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light. Ecotoxicol Environ Saf. 210:111862. doi:10.1016/j.ecoenv.2020.111862.
  • Ebrahimi A, Jafari N, Ebrahimpour K, Nikoonahad A, Mohammadi A, Fanaei F, Abdolahnejad A. 2020b. The performance of TiO2/NaY-zeolite nanocomposite in photocatalytic degradation of Microcystin-LR from aqueous solutions: optimization by response surface methodology (RSM). 7(4):245–256.
  • Hashemzadeh B, Alamgholiloo H, Pesyan NN, Asgari E, Sheikhmohammadi A, Yeganeh J, Hashemzadeh H. 2021. Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: a comparison of composite and core− shell structures. Chemosphere. 281:130970. doi:10.1016/j.chemosphere.2021.130970.
  • Li G, Wang C, Yan Y, Yan X, Li W, Feng X, Li J, Xiang Q, Tan W, Liu F. 2020. Highly enhanced degradation of organic pollutants in hematite/sulfite/photo system. Chem Eng J. 386:124007. doi:10.1016/j.cej.2019.124007.
  • Liu S, Fu Y, Wang G, Liu Y. 2021. Degradation of sulfamethoxazole by UV/sulfite in presence of oxygen: efficiency, influence factors and mechanism. Sep Purif Technol. 268:118709. doi:10.1016/j.seppur.2021.118709.
  • Liu X, Yoon S, Batchelor B, Abdel-Wahab A. 2013. Photochemical degradation of vinyl chloride with an advanced reduction process (ARP)–effects of reagents and pH. Chem Eng J. 215:868–875. doi:10.1016/j.cej.2012.11.086.
  • Luo B, Huang G, Yao Y, An C, Zhang P, Zhao K. 2021. Investigation into the influencing factors and adsorption characteristics in the removal of sulfonamide antibiotics by carbonaceous materials. J Clean Prod. 319:128692. doi:10.1016/j.jclepro.2021.128692.
  • Mirzaei R, Yunesian M, Nasseri S, Gholami M, Jalilzadeh E, Shoeibi S, Mesdaghinia A. 2018. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci Total Environ. 619:446–459. doi:10.1016/j.scitotenv.2017.07.272.
  • Murcia-López S, Villa K, Andreu T, Morante JR. 2015. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO 4 photocatalyst. Chem Commun. 51(33):7249–7252. doi:10.1039/C5CC00978B.
  • Nasuhoglu D, Yargeau V, Berk D. 2011. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax= 254 nm). J Hazard Mater. 186(1):67–75. doi:10.1016/j.jhazmat.2010.10.080.
  • Rahmah A, Harimurti S, Murugesan T. 2017. Experimental investigation on the effect of wastewater matrix on oxytetracycline mineralization using UV/H 2 O 2 system. Int J Environ Sci Technol. 14(6):1225–1233. doi:10.1007/s13762-016-1226-6.
  • Rapadas NJ, Balela MDL. 2017. Hydrothermal synthesis of hierarchical hematite (α-Fe2O3) microstructures for photocatalytic degradation of methyl Orange. Philipp J Sci. 146(4):396.
  • Rasolevandi T, Naseri S, Azarpira H, Mahvi A. 2019. Photo-degradation of dexamethasone phosphate using UV/Iodide process: kinetics, intermediates, and transformation pathways. J Mol Liq. 295:111703. doi:10.1016/j.molliq.2019.111703.
  • Senasu T, Nijpanich S, Juabrum S, Chanlek N, Nanan S. 2021. CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin antibiotics. Appl Surf Sci. 567:150850. doi:10.1016/j.apsusc.2021.150850.
  • Sheikhmohammadi A, Mohseni SM, Hashemzadeh B, Asgari E, Sharafkhani R, Sardar M, Sarkhosh M, Almasiane M. 2019. Fabrication of magnetic graphene oxide nanocomposites functionalized with a novel chelating ligand for the removal of Cr (VI): modeling, optimization, and adsorption studies. Desalination Water Treat. 160:297–307. doi:10.5004/dwt.2019.24381.
  • Tran ML, Fu -C-C, Juang R-S. 2019. Effects of water matrix components on degradation efficiency and pathways of antibiotic metronidazole by UV/TiO2 photocatalysis. J Mol Liq. 276:32–38. doi:10.1016/j.molliq.2018.11.155.
  • Wang T, Huang M-C, Hsieh Y-K, Chang W-S, Lin J-C, Lee C-H, Wang C-F. 2013. Influence of sodium halides (NaF, NaCl, NaBr, NaI) on the photocatalytic performance of hydrothermally synthesized hematite photoanodes. ACS Appl Mater Interf. 5(16):7937–7949. doi:10.1021/am402024q.
  • Zhang Y, Li L, Pan Z, Zhu Y, Shao Y, Wang Y, Yu K. 2020. Degradation of sulfamethoxazole by UV/persulfate in different water samples: influential factors, transformation products and toxicity. Chem Eng J. 379:122354. doi:10.1016/j.cej.2019.122354.
  • Zhang Y, Zhuang Y, Geng J, Ren H, Xu K, Ding L. 2016. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Sci Total Environ. 550:184–191. doi:10.1016/j.scitotenv.2016.01.078.
  • Zhao G, Ding J, Zhou F, Chen X, Wei L, Gao Q, Wang K, Zhao Q. 2020. Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: mechanisms and degradation pathway. Chem Eng J. 405:126704. doi:10.1016/j.cej.2020.126704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.