375
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Nanoprotection from SARS-COV-2: would nanotechnology help in Personal Protection Equipment (PPE) to control the transmission of COVID-19?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 670-699 | Received 12 May 2021, Accepted 21 Feb 2022, Published online: 05 Mar 2022

References

  • Abdel-Bakky MS, Amin E, Ewees MG, Mahmoud NI, Mohammed HA, Altowayan WM, Abdellatif AAH. 2022. Coagulation system activation for targeting of COVID-19: insights into anticoagulants, vaccine-loaded nanoparticles, and hypercoagulability in COVID-19 vaccines. Viruses [Internet]. [accessed 2022 Feb 14] 14(2):228. doi:10.3390/v14020228.
  • Abraham JP, Plourde BD, Cheng L. 2020. Using heat to kill SARS-CoV -2. Rev Med Virol [Internet]. [accessed 2021 Jan 26] 30(5). doi:https://doi.org/10.1002/rmv.2115.
  • Aderibigbe BA. 2017. Metal-Based nanoparticles for the treatment of infectious diseases. Molecules [Internet]. [accessed 2021 Jan 25] 22(8):1370. doi:10.3390/molecules22081370.
  • Adhikari A, Pal U, Bayan S, Mondal S, Ghosh R, Darbar S, Saha-Dasgupta T, Ray SK, Pal SK. 2021. Nanoceutical fabric prevents COVID-19 spread through expelled respiratory droplets: a combined computational, spectroscopic and anti-microbial study [Internet]. [place unknown]: Microbiology; [accessed 2022 Feb 13]. doi:10.1101/2021.02.20.432081
  • Adu SA, Naughton PJ, Marchant R, Banat IM. 2020. Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics. 12(11):E1099. doi:10.3390/pharmaceutics12111099.
  • Akduman C, Akçakoca Kumbasar EP. 2018. Nanofibers in face masks and respirators to provide better protection. IOP Conf Ser: Mater Sci Eng [Internet]. [accessed 2020 Nov 7] 460:012013. doi:10.1088/1757-899X/460/1/012013.
  • Al Hajjar S, Memish ZA, McIntosh K. 2013. Middle East respiratory syndrome Coronavirus (MERS-CoV): a perpetual challenge. Ann Saudi Med [Internet]. [accessed 2020 Aug 20] 33(5):427–436. doi:10.5144/0256-4947.2013.427.
  • Al-Hazeem NZA. 2018. Nanofibers and electrospinning method. Novel Nanomaterials - Synthesis and Applications [Internet]. [accessed 2021 Jan 21]. doi:10.5772/intechopen.72060
  • Ali I, Alharbi OML. 2020. COVID-19: disease, management, treatment, and social impact. Sci Total Environ. 728:138861. doi:10.1016/j.scitotenv.2020.138861.
  • Andersson U, Ottestad W, Tracey KJ. 2020. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med [Internet]. [accessed 2021 Jan 29] 26(1). doi:https://doi.org/10.1186/s10020-020-00172-4.
  • Aquino A, Paschoalin VMF, Tessaro LLG, Raymundo-Pereira PA, Conte-Junior CA. 2022. Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. J Pharm Biomed Anal. 211:114608. doi:10.1016/j.jpba.2022.114608.
  • Astuti I, Ysrafil. 2020. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr [Internet]. [accessed 2021 Mar 24] 14(4):407–412. doi:10.1016/j.dsx.2020.04.020.
  • Bailly C, Vergoten G. 2020. Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther [Internet]. [accessed 2021 Jan 28] 214:107618. doi:10.1016/j.pharmthera.2020.107618.
  • Bakkar MR, Faraag AHI, Soliman ERS, Fouda MS, Sarguos AMM, McLean GR, Hebishy AMS, Elkhouly GE, Raya NR, Abo-Zeid Y. 2021. Rhamnolipids nano-micelles as a potential hand sanitizer. Antibiotics (Basel) [Internet]. [accessed 2022 Feb 14] 10(7):751. doi:10.3390/antibiotics10070751.
  • Balagna C, Ferraris S, Perero S, Miola M, Baino F, Coggiola A, Dolcino D, Battiato A, Manfredotti C, Vittone E, et al. 2013. Silver nanocluster/Silica composite coatings obtained by sputtering for antibacterial applications. In: Njuguna J, editor. Structural nanocomposites: perspectives for future applications [Internet]. Berlin, Heidelberg: Springer; [accessed 2021 Jan 25]; p. 225–247. doi:10.1007/978-3-642-40322-4_10.
  • Balagna C, Perero S, Percivalle E, Nepita EV, Ferraris M. 2020. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics [Internet]. [accessed 2020 Oct 6] 1:100006. doi:10.1016/j.oceram.2020.100006.
  • Batéjat C, Grassin Q, Manuguerra J-C, Leclercq I. 2021. Heat inactivation of the severe acute respiratory syndrome coronavirus 2. J Biosaf Biosecur [Internet]. [accessed 2021 Aug 29] 3(1):1–3. doi:10.1016/j.jobb.2020.12.001.
  • Behzadinasab S, Chin A, Hosseini M, Poon L, Ducker WA. 2020. A surface coating that rapidly inactivates SARS-CoV-2. ACS Appl Mater Interfaces [Internet]. [accessed 2020 Nov 9] 12(31):34723–34727. doi:10.1021/acsami.0c11425.
  • Betancourt T, Brannon-Peppas L. 2006. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomedicine [Internet]. [accessed 2021 Mar 22] 1(4):483–495. doi:10.2147/nano.2006.1.4.483.
  • Bhavana V, Thakor P, Singh SB, Mehra NK. 2020. COVID-19: pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci. 261:118336. doi:10.1016/j.lfs.2020.118336.
  • Carrazco-Palafox J, Rivera-Chavira BE, Adame-Gallegos JR, Rodríguez-Valdez LM, Orrantia-Borunda E, Nevárez-Moorillón GV. 2021. Rhamnolipids from pseudomonas aeruginosa Rn19a modifies the biofilm formation over a borosilicate surface by clinical isolates. Coatings [Internet]. [accessed 2022 Feb 14] 11(2):136. doi:10.3390/coatings11020136.
  • CDC. 2020. Coronavirus disease 2019 (COVID-19). centers for disease control and prevention [Internet]. [accessed 2020 Nov 7]. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/disinfecting-your-home.html.
  • Chen R, Huang Y, Quan J, Liu J, Wang H, Billiar TR, Lotze MT, Zeh HJ, Kang R, Tang D. 2020. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon [Internet]. [accessed 2021 Jan 29] 6(12):e05672. doi:10.1016/j.heliyon.2020.e05672.
  • Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, Peiris M, Poon LLM. 2020. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe [Internet]. [accessed 2021 Jan 26] 1(1):e10. doi:10.1016/S2666-5247(20)30003-3.
  • Chow WL, Tin AS, Lim WW, Lim J, Kurup A, Ling ML, Tan AL, Ong BC. 2013. Efficacy of titanium dioxide compounds in preventing environmental contamination by meticillin resistant Staphylococcus aureus (MRSA). Int J Infect Control [Internet]. [accessed 2021 Mar 23] 9(3). doi:10.3396/ijic.v9i3.11323.
  • Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, Ong HC, Uddin MA, Mofijur M. 2021. Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environ Res [Internet]. [accessed 2021 Jan 29] 192:110294. doi:10.1016/j.envres.2020.110294.
  • Cong Y, Ulasli M, Schepers H, Mauthe M, V’-Kovski P, Kriegenburg F, Thiel V, de Haan CAM, Reggiori F. 2020. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J Virol. 94(4). doi:10.1128/JVI.01925-19.
  • Davies CN. 1953. The separation of airborne dust and particles. Proc Inst Mech Eng [Internet]. [accessed 2021 Aug 28] 167(1b):185–213. doi:10.1177/002034835316701b13.
  • Deshmukh SP, Patil SM, Mullani SB, Delekar SD. 2019. Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng, C [Internet]. [accessed 2020 Nov 9] 97:954–965. doi:10.1016/j.msec.2018.12.102.
  • Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. 2020. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol [Internet]. [accessed 2021 Mar 24] 11. doi:10.3389/fimmu.2020.576622.
  • El-Atab N, Qaiser N, Badghaish H, Shaikh SF, Hussain MM. 2020. Flexible nanoporous template for the design and development of reusable anti-COVID-19 hydrophobic face masks. ACS Nano [Internet]. [accessed 2020 Sep 21] 14(6):7659–7665. doi:10.1021/acsnano.0c03976.
  • El-Megharbel SM, Alsawat M, Al-Salmi FA, Hamza RZ. 2021. Utilizing of (Zinc Oxide Nano-Spray) for disinfection against “SARS-CoV-2” and testing its biological effectiveness on some biochemical parameters during (COVID-19 pandemic)—”ZnO nanoparticles have antiviral activity against (SARS-CoV-2). Coatings [Internet]. [accessed 2022 Feb 13] 11(4):388. doi:10.3390/coatings11040388.
  • Espitia PJP, Soares NDF, Coimbra JDR, de Andrade NJ, Cruz RS, Medeiros EAA. 2012. Zinc oxidenanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol [Internet]. [accessed 2022 Feb 6] 5(5):1447–1464. doi:10.1007/s11947-012-0797-6.
  • Faten F, Rania Ibrahim S. 2018. Comparing surface chemical modifications of Zinc Oxide nanoparticles for modulating their antiviral activity against herpes simplex virus type-1. Int J Nanoparticles Nanotech [Internet]. [accessed 2022 Feb 6] 4(1). doi:10.35840/2631-5084/5521.
  • Feng T, Nie C, Peng P, Lu H, Wang T, Li P, Huang W. 2022. Nanoagent-Based theranostic strategies against human coronaviruses. Nano Res [Internet]. [accessed 2022 Feb 14]. doi:10.1007/s12274-021-3949-z.
  • Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. 2020. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev [Internet]. [accessed 2021 Jan 25] 29(155):200068. doi:https://doi.org/10.1183/16000617.0068-2020.
  • Fibriana F, Amalia AV, Muntamah S, Ulva L, Aryanti S. 2020. Antimicrobial activities of green synthesized silver nanoparticles from Marchantia sp. extract: testing an alcohol-free hand sanitizer product formula. J Microbiol Biotechnol Food Sci [Internet]. [accessed 2022 Feb 14] 9(6):1034–1038. doi:https://doi.org/10.15414/jmbfs.2020.9.6.1034-1038.
  • Fritea L, Banica F, Costea T, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. 2021. Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (Bio)sensors with biomedical applications. Materials [Internet]. [accessed 2022 Feb 14] 14(21):6319. doi:10.3390/ma14216319.
  • Geyer F, D’-Acunzi M, Sharifi-Aghili A, Saal A, Gao N, Kaltbeitzel A, Sloot T-F, Berger R, Butt H-J, Vollmer D. 2020. When and how self-cleaning of superhydrophobic surfaces works. Sci Adv [Internet]. [accessed 2021 Jan 26] 6(3):eaaw9727. doi:10.1126/sciadv.aaw9727.
  • Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, et al. 2019. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci [Internet]. [accessed 2020 Nov 9] 26(1):70. doi:10.1186/s12929-019-0563-4.
  • Gonzalez A, Aboubakr HA, Brockgreitens J, Hao W, Wang Y, Goyal SM, Abbas A. 2021. Durable nanocomposite face masks with high particulate filtration and rapid inactivation of coronaviruses. Sci Rep [Internet]. [accessed 2022 Feb 6] 11(1):24318. doi:10.1038/s41598-021-03771-1.
  • Govind V, Bharadwaj S, Sai Ganesh MR, Vishnu J, Shankar KV, Shankar B, Rajesh R. 2021. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Biometals [Internet]. [accessed 2022 Feb 13] 34(6):1217–1235. doi:10.1007/s10534-021-00339-4.
  • Graham M, Nixon R, Burrell LJ, Bolger C, Johnson PDR, Grayson ML. 2005. Low rates of cutaneous adverse reactions to alcohol-based hand hygiene solution during prolonged use in a large teaching hospital. Antimicrob Agents Chemother. 49(10):4404–4405. doi:10.1128/AAC.49.10.4404-4405.2005.
  • Gugulothu D, Barhoum A, Nerella R, Ajmer R, Bechelany M. 2019. Fabrication of nanofibers: electrospinning and non-electrospinning techniques. In: Barhoum A; Bechelany M and Makhlouf A, editors. Handbook of nanofibers [Internet]. Cham: Springer International Publishing; p. 45–77. [accessed 2021 Jan 21]. doi:10.1007/978-3-319-53655-2_6.
  • Hasan J, Pyke A, Nair N, Yarlagadda T, Will G, Spann K, Yarlagadda PKDV. 2020b. Antiviral nanostructured surfaces reduce the viability of SARS-CoV-2. ACS Biomater Sci Eng [Internet]. [accessed 2020 Oct 4] 6(9):4858–4861. doi:10.1021/acsbiomaterials.0c01091.
  • Hasan J, Xu Y, Yarlagadda T, Schuetz M, Spann K, Yarlagadda PK. 2020a. Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications. ACS Biomater Sci Eng. 6(6):3608–3618. doi:10.1021/acsbiomaterials.0c00348.
  • Hasöksüz M, Kiliç S, Saraç F. 2020. Coronaviruses and SARS-COV-2. Turk J Med Sci [Internet]. [accessed 2021 Mar 24] 50(3):549–556. doi:10.3906/sag-2004-127.
  • Hosseini M, Chin AWH, Behzadinasab S, Poon LLM, Ducker WA. 2021. Cupric oxide coating that rapidly reduces infection by SARS-CoV-2 via solids. ACS Appl Mater Interfaces [Internet]. [accessed 2021 Mar 23] 13(5):5919–5928. doi:10.1021/acsami.0c19465.
  • Hou A, Feng G, Zhuo J, Sun G. 2015. UV light-induced generation of reactive oxygen species and antimicrobial properties of cellulose fabric modified by 3,3',4,4'-benzophenone tetracarboxylic acid. ACS Appl Mater Interfaces. 7(50):27918–27924. doi:10.1021/acsami.5b09993.
  • Hussein HA, Kandeil A, Gomaa M, Mohamed El Nashar R, El-Sherbiny IM, Hassan RYA. 2021. SARS-CoV-2-Impedimetric biosensor: virus-imprinted chips for early and rapid diagnosis. ACS Sens [Internet]. [accessed 2022 Feb 14] 6(11):4098–4107. doi:10.1021/acssensors.1c01614.
  • Hutasoit N, Kennedy B, Hamilton S, Luttick A, Rahman Rashid RA, Palanisamy S. 2020. Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology. Manuf Lett. 25:93–97. doi:10.1016/j.mfglet.2020.08.007.
  • Innocenzi P, Stagi L. 2020. Carbon-Based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci [Internet]. [accessed 2021 Jan 25] 11(26):6606–6622. doi:10.1039/D0SC02658A.
  • Irfan M, Perero S, Miola M, Maina G, Ferri A, Ferraris M, Balagna C. 2017. Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose. 24(5):2331–2345. doi:https://doi.org/10.1007/s10570-017-1232-y.
  • Jack Neal ASSA. 2015. Titanium Dioxide Nanoparticles as an Environmental Sanitizing Agent. J Microb Biochem Technol [Internet]. [accessed 2020 Nov 9] 7(2). doi:10.4172/1948-5948.1000183.
  • Jeevahan J, Chandrasekaran M, Britto Joseph G, Durairaj RB, Mageshwaran G. 2018. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J Coat Technol Res [Internet]. [accessed 2021 Jan 26] 15(2):231–250. doi:10.1007/s11998-017-0011-x.
  • Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. 2020. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun [Internet]. [accessed 2022 Feb 14] 533(1):195–200. doi:10.1016/j.bbrc.2020.09.018.
  • Jong BD, Meeder AM, Koekkoek KAC, Schouten MA, Westers P, Zanten AV. 2018. Pre–post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study. J Hosp Infect [Internet]. [accessed 2021 Mar 23] 99(3):256–262. doi:10.1016/j.jhin.2017.04.008.
  • Kalantar-Zadeh K, Ward SA, Kalantar-Zadeh K, El-Omar EM. 2020. Considering the effects of microbiome and diet on SARS-CoV-2 infection: nanotechnology roles. ACS Nano [Internet]. [accessed 2022 Jan 21] 14(5):5179–5182. doi:10.1021/acsnano.0c03402.
  • Kampf G, Marschall S, Eggerstedt S, Ostermeyer C. 2010. Efficacy of ethanol-based hand foams using clinically relevant amounts: a cross-over controlled study among healthy volunteers. BMC Infect Dis [Internet]. [accessed 2020 Nov 8] 10(1):78. doi:10.1186/1471-2334-10-78.
  • Kampf G, Todt D, Pfaender S, Steinmann E. 2020. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect [Internet]. [accessed 2020 Nov 8] 104(3):246–251. doi:10.1016/j.jhin.2020.01.022.
  • Kampf G, Voss A, Scheithauer S. 2020. Inactivation of coronaviruses by heat. J Hosp Infect [Internet]. [accessed 2021 Jan 26] 105(2):348–349. doi:10.1016/j.jhin.2020.03.025.
  • Kang X, Liu S, Dai Z, He Y, Song X, Tan Z. 2019. Titanium dioxide: from engineering to applications. Catalysts [Internet]. [accessed 2021 Mar 23] 9(2):191. doi:10.3390/catal9020191.
  • Karmacharya M, Kumar S, Gulenko O, Cho Y-K. 2021. Advances in facemasks during the COVID-19 pandemic era. ACS Appl Bio Mater [Internet]. [accessed 2022 Feb 14] 4(5):3891–3908. doi:10.1021/acsabm.0c01329.
  • Khaiboullina S, Uppal T, Dhabarde N, Subramanian VR, Verma SC. 2020. Inactivation of human coronavirus by Titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2. Viruses [Internet]. [accessed 2021 Mar 23] 13(1):19. doi:https://doi.org/10.3390/v13010019.
  • Khalil M, Alam MM, Arefin MK, Chowdhury MR, Huq MR, Chowdhury JA, Khan AM. 2020. Role of personal protective measures in prevention of COVID-19 spread among physicians in Bangladesh: a multicenter cross-sectional comparative study. SN Compr Clin Med [Internet]. [accessed 2021 Mar 24]:1–7. doi:10.1007/s42399-020-00471-1.
  • Kim J-H, Roberge RJ, Powell JB, Shaffer RE, Ylitalo CM, Sebastian JM. 2015. Pressure drop of filtering facepiece respirators: how low should we go? Int J Occup Med Environ Health [Internet]. [accessed 2021 Aug 27] 28(1):71–80. doi:10.13075/ijomeh.1896.00153.
  • Kim I, Viswanathan K, Kasi G, Thanakkasaranee S, Sadeghi K, Seo J. 2020a. ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev Int [Internet]. [accessed 2022 Feb 6]:1–29. doi:10.1080/87559129.2020.1737709.
  • Kim J, Yeom M, Lee T, Kim H-O, Na W, Kang A, Lim J-W, Park G, Park C, Song D et al. 2020b. Porous gold nanoparticles for attenuating infectivity of influenza A virus. J Nanobiotechnology. 18(1):54. doi:10.1186/s12951-020-00611-8.
  • Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. 2020. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano [Internet]. [accessed 2020 Sep 16] 14(5):6339–6347. doi:10.1021/acsnano.0c03252.
  • Korneev D, Kurskaya O, Sharshov K, Eastwood J, Strakhovskaya M. 2019. Ultrastructural aspects of photodynamic inactivation of highly pathogenic Avian H5N8 influenza virus. Viruses [Internet]. [accessed 2021 Jan 28] 11(10):955. doi:10.3390/v11100955.
  • Kumar S, Karmacharya M, Joshi SR, Gulenko O, Park J, Kim G-H, Cho Y-K. 2021. Photoactive antiviral face mask with self-sterilization and reusability. Nano Lett [Internet]. [accessed 2022 Feb 13] 21(1):337–343. doi:10.1021/acs.nanolett.0c03725.
  • Lee D, Lee T, Hong JH, Jung HG, Lee SW, Lee G, Yoon DS. 2022. Current state-of-art nanotechnology applications for developing SARS-CoV-2-detecting biosensors: A review. Meas Sci Technol [Internet]. [accessed 2022 Feb 14]. doi:10.1088/1361-6501/ac51f1.
  • Leung W-F, Sun Q. 2020a. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols. Sep Purif Technol [Internet]. [accessed 2020 Oct 5] 245:116887. doi:10.1016/j.seppur.2020.116887.
  • Leung WWF, Sun Q. 2020b. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols. Sep Purif Technol [Internet]. [accessed 2021 Jan 22] 250:116886. doi:10.1016/j.seppur.2020.116886.
  • Li X, Gong Y. 2015. Design of polymeric nanofiber Gauze mask to prevent inhaling PM2.5 particles from Haze pollution. J Chem [Internet]. [accessed 2020 Nov 7] 2015:1–5. doi:10.1155/2015/460392.
  • Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. 2020a. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 55(5):105951. doi:10.1016/j.ijantimicag.2020.105951.
  • Li JT, Stanford MG, Chen W, Presutti SE, Tour JM. 2020b. Laminated laser-induced graphene composites. ACS Nano [Internet]. [accessed 2021 Aug 30] 14(7):7911–7919. doi:10.1021/acsnano.0c02835.
  • Li Y, Tokura H, Guo YP, Wong ASW, Wong T, Chung J, Newton E. 2005. Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. Int Arch Occup Environ Health. 78(6):501–509. doi:10.1007/s00420-004-0584-4.
  • Lin Z, Wang Z, Zhang X, Diao D. 2020. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Res [Internet]. [accessed 2021 Jan 26]:1–14. doi:10.1007/s12274-020-3158-1.
  • Maduraiveeran G, Sasidharan M, Ganesan V. 2018. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron. 103:113–129. doi:10.1016/j.bios.2017.12.031.
  • Malabadi RB, Chalannavar RK, Kolkar KP, Meti NT. 2021. Role of plant based hand sanitizers during the recent outbreak of Coronavirus (SARS-CoV-2) disease (Covid-19). Sbb [Internet]. [accessed 2022 Feb 14] 5(1):458–468.
  • Mantlo EK, Paessler S, Seregin A, Mitchell A. 2020. Luminore CopperTouchtm surface coating effectively inactivates SARS-CoV-2, Ebola, and Marburg viruses in vitro. medRxiv [Internet]. [accessed 2021 Mar 23]. doi:10.1101/2020.07.05.20146043.
  • Matuschek C, Moll F, Fangerau H, Fischer JC, Zänker K, van Griensven M, Schneider M, Kindgen-Milles D, Knoefel WT, Lichtenberg A, et al. 2020. Face masks: benefits and risks during the COVID-19 crisis. Eur J Med Res [Internet]. [accessed 2021 Jan 25] 25(1). doi:https://doi.org/10.1186/s40001-020-00430-5.
  • McBride R, van Zyl M, Fielding BC. 2014. The Coronavirus nucleocapsid is a multifunctional protein. Viruses [Internet]. [accessed 2021 Mar 24] 6(8):2991–3018. doi:10.3390/v6082991.
  • Meguid SA, Elzaabalawy A. 2020. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: part I—protection strategies against fomites. Int J Mech Mater Des [Internet]. [accessed 2021 Jan 29]:1–9. doi:10.1007/s10999-020-09513-x.
  • Merkl P, Long S, McInerney GM, Sotiriou GA. 2021. Antiviral activity of silver, copper oxide and zinc oxide nanoparticle coatings against SARS-CoV-2. Nanomaterials (Basel) [Internet]. [accessed 2022 Feb 13] 11(5):1312. doi:10.3390/nano11051312.
  • Misra R, Acharya S, Sushmitha N. 2021. Nanobiosensor‐based diagnostic tools in viral infections: special emphasis on Covid‐19. Rev Med Virol [Internet]. [accessed 2022 Feb 14]. doi:10.1002/rmv.2267.
  • Monsé C, Raulf M, Hagemeyer O, van Kampen V, Kendzia B, Gering V, Marek E-M, Jettkant B, Bünger J, Merget R et al. 2019. Airway inflammation after inhalation of nano-sized zinc oxide particles in human volunteers. BMC Pulm Med [Internet]. [accessed 2022 Feb 12] 19(1):266. doi:10.1186/s12890-019-1026-0.
  • Monsé C, Raulf M, Jettkant B, van Kampen V, Kendzia B, Schürmeyer L, Seifert CE, Marek E-M, Westphal G, Rosenkranz N, et al. 2021. Health effects after inhalation of micro- and nano-sized zinc oxide particles in human volunteers. Arch Toxicol [Internet]. [accessed 2022 Feb 12] 95(1):53–65. doi:10.1007/s00204-020-02923-y.
  • Muzio G, Perero S, Miola M, Oraldi M, Ferraris S, Vernè E, Festa F, Canuto RA, Festa V, Ferraris M. 2017. Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer. J Biomed Mater Res B Appl Biomater. 105(6):1586–1593. doi:10.1002/jbm.b.33697.
  • Nakamura K, Ishiyama K, Sheng H, Ikai H, Kanno T, Niwano Y. 2015. Bactericidal activity and mechanism of photoirradiated polyphenols against Gram-positive and -negative bacteria. J Agric Food Chem [Internet]. [accessed 2021 Jan 28] 63(35):7707–7713. doi:10.1021/jf5058588.
  • Okamoto Y, Ohmori K, Glatz CE. 2001. Harvest time effects on membrane cake resistance of Escherichia coli broth. J Memb Sci [Internet]. [accessed 2021 Jan 25] 190(1):93–106. doi:10.1016/S0376-7388(01)00431-8.
  • Ong S Wei, Tan Y Kim, Chia P Ying, Lee T Hong, Ng O Tek, Wong M Su, and Marimuthu K. (2020). Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA, 323(16), 1610. doi:10.1001/jama.2020.3227.
  • Palestino G, GarcíGarcíA-Silva I, González-Ortega O, Rosales-Mendoza S. 2020. Can nanotechnology help in the fight against COVID-19? Expert Rev Anti-infectious Ther. [Internet]. [accessed 2020 Aug 23]:1–16. doi:10.1080/14787210.2020.1776115.
  • Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. 2018. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res [Internet]. [accessed 2021 Jan 29] 32(12):2323–2339. doi:10.1002/ptr.6178.
  • Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, Baghbanzadeh M, Aghamohammadi N, Zhang W, Haque U. 2020. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol [Internet]. [accessed 2020 Aug 22] 49(3):717–726. doi:10.1093/ije/dyaa033.
  • Pinhas AR. 2010. A kinetic study using evaporation of different types of hand-rub sanitizers. J Chem Educ [Internet]. [accessed 2020 Nov 8] 87(9):950–951. doi:10.1021/ed1003492.
  • Pinheiro T, Cardoso AR, Sousa CEA, Marques AC, Tavares APM, Matos AM, Cruz MT, Moreira FTC, Martins R, Fortunato E et al. 2021. Paper-based biosensors for COVID-19: a review of innovative tools for controlling the pandemic. ACS Omega [Internet]. [accessed 2022 Feb 14] 6(44):29268–29290. doi:10.1021/acsomega.1c04012.
  • Poggio C, Colombo M, Arciola CR, Greggi T, Scribante A, Dagna A. 2020. Copper-alloy surfaces and cleaning Regimens against the spread of SARS-CoV-2 in dentistry and orthopedics. from fomites to anti-infectious nanocoatings. Materials [Internet]. [accessed 2020 Nov 9] 13(15):3244. doi:10.3390/ma13153244.
  • Poon C, Patel AA. 2020. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Ex [Internet]. [accessed 2021 Jan 25] 1(1):012001. doi:10.1088/2632-959X/ab8075.
  • Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. 2021. Biosensors as nano-analytical tools for COVID-19 detection. Sensors [Internet]. [accessed 2022 Feb 14] 21(23):7823. doi:10.3390/s21237823.
  • Pyrgiotakis G, McDevitt J, Bordini A, Diaz E, Molina R, Watson C, Deloid G, Lenard S, Fix N, Mizuyama Y, et al. 2014. A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environ Sci: Nano [Internet]. [accessed 2021 Mar 23] 1(1):15–26. doi:10.1039/C3EN00007A.
  • Rai M, Bonde S, Yadav A, Bhowmik A, Rathod S, Ingle P, Gade A. 2021. Nanotechnology as a shield against COVID-19: current advancement and limitations. Viruses [Internet]. [accessed 2022 Feb 14] 13(7):1224. doi:10.3390/v13071224.
  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. 2016. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol [Internet]. [accessed 2020 Nov 9] 42(1):46–56. doi:10.3109/1040841X.2013.879849.
  • Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. 2006. Electrospun nanofibers: solving global issues. Materials Today [Internet]. [accessed 2021 Jan 21] 9(3):40–50. doi:10.1016/S1369-7021(06)71389-X.
  • Reid M, Whatley V, Spooner E, Nevill AM, Cooper M, Ramsden JJ, Dancer SJ. 2018. How does a photocatalytic antimicrobial coating affect environmental bioburden in hospitals? Infect Control Hosp Epidemiol. 39(4):398–404. doi:10.1017/ice.2017.297.
  • Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS. 2008. Anti-Herpesvirus activities of pseudomonas sp. S-17 Rhamnolipid and its complex with alginate. Zeitschrift Für Naturforschung C [Internet]. [accessed 2022 Feb 14] 63(1–2):75–81. doi:10.1515/znc-2008-1-214.
  • Rodrigues MC, Rolim WR, Viana MM, Souza TR, Gonçalves F, Tanaka CJ, Bueno-Silva B, Seabra AB. 2020. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent [Internet]. [accessed 2021 Jan 25] 96:103327. doi:10.1016/j.jdent.2020.103327.
  • Rossner P Jr, Vrbova K, Strapacova S, Rossnerova A, Ambroz A, Brzicova T, Libalova H, Javorkova E, Kulich P, Vecera Z, et al. 2019. Inhalation of ZnO nanoparticles: splice junction expression and alternative splicing in mice. Toxicological Sciences [Internet]. [accessed 2022 Feb 12] 168(1):190–200. doi:10.1093/toxsci/kfy288.
  • Rothe M, Zhao Y, Kewes G, Kochovski Z, Sigle W, van Aken PA, Koch C, Ballauff M, Lu Y, Benson O. 2019. Silver nanowires with optimized silica coating as versatile plasmonic resonators. Sci Rep [Internet]. [accessed 2021 Jan 25] 9(1):3859. doi:10.1038/s41598-019-40380-5.
  • Sabia G, Ferraris M, Spagni A. 2014. Online monitoring of MBR fouling by transmembrane pressure and permeability over a long-term experiment. Sep Purif Technol [Internet]. [accessed 2021 Jan 25] 122:297–305. doi:10.1016/j.seppur.2013.11.022.
  • Sahu D, Kannan GM, Vijayaraghavan R, Anand T, Khanum F. 2013. Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicology [Internet]. [accessed 2022 Feb 12] 2013:e316075. doi:10.1155/2013/316075.
  • Saini R, Saini S, Sharma S. 2010. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 3(1):32–33. doi:10.4103/0974-2077.63301.
  • Sana S, Datta S, Biswas D, Sengupta D. 2018. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim Biophys Acta Biomembr. 1860(2):579–585. doi:10.1016/j.bbamem.2017.09.027.
  • Sanna V, Satta S, Hsiai T, Sechi M. 2022. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur J Med Chem. 231:114121. doi:10.1016/j.ejmech.2022.114121.
  • Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, Crown KK, Brett-Major DM, Schnaubelt ER, Broadhurst MJ, et al. 2020. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep [Internet]. [accessed 2020 Nov 7] 10(1):12732. doi:10.1038/s41598-020-69286-3.
  • Sarkar M, Saha S. 2020. Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies. PLoS One [Internet]. [accessed 2021 Mar 24] 15(8):e0237300. doi:https://doi.org/10.1371/journal.pone.0237300.
  • Sehar S, Amiza, Khan IH. 2021. Role of ZnO nanoparticles for improvement of antibacterial activity in food packaging. Asian J Pharm Res [Internet]. [accessed 2022 Feb 6] 11(2):128–131. doi:10.52711/2231-5691.2021.00024.
  • Shaw K. 2006. The 2003 SARS outbreak and its impact on infection control practices. Public Health [Internet]. [accessed 2020 Aug 20] 120(1):8–14. doi:10.1016/j.puhe.2005.10.002.
  • Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A. 2015. Electrospinning of nanofibers and their applications for energy devices. J Nanomater [Internet]. [accessed 2021 Jan 21] 2015:e140716. doi:10.1155/2015/140716.
  • Si Y, Zhang Z, Wu W, Fu Q, Huang K, Nitin N, Ding B, Sun G. 2018. Daylight-Driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci Adv. 4(3):eaar5931. doi:10.1126/sciadv.aar5931.
  • Singh P, Singh D, Sa P, Mohapatra P, Khuntia A, K Sahoo S. 2021. Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation. Nanomedicine (Lond). 16(14):1219–1235. doi:10.2217/nnm-2021-0004.
  • Spagnul C, Turner LC, Boyle RW. 2015. Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B [Internet]. [accessed 2021 Jan 28] 150:11–30. doi:10.1016/j.jphotobiol.2015.04.021.
  • Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N. 2020. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials [Internet]. [accessed 2022 Jan 21] 10(4):802. doi:10.3390/nano10040802.
  • Srivastava M, Srivastava N, Mishra PK, Malhotra BD. 2021. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci Total Environ [Internet]. [accessed 2022 Feb 14] 754:142363. doi:10.1016/j.scitotenv.2020.142363.
  • Sun Q, Leung W-F. 2019. Charged PVDF multi-layer filters with enhanced filtration performance for filtering nano-aerosols. Sep Purif Technol [Internet]. [accessed 2021 Jan 22] 212:854–876. doi:10.1016/j.seppur.2018.11.063.
  • Sundberg K, Champagne V, McNally B, Helfritch D, Sisson R. 2015. Effectiveness of nanomaterial copper cold spray surfaces on inactivation of influenza A virus. J Biotechnol Biomater [Internet]. [accessed 2020 Oct 4] 5(4). doi:10.4172/2155-952X.1000205.
  • Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J. 2020. Nanotechnology-Based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol [Internet]. [accessed 2022 Jan 21] 15(8):618–621. doi:10.1038/s41565-020-0751-0.
  • Tebyetekerwa M, Xu Z, Yang S, Ramakrishna S. 2020. Electrospun nanofibers-based face masks. Adv Fiber Mater [Internet]. [accessed 2020 Oct 5] 2(3):161–166. doi:10.1007/s42765-020-00049-5.
  • Torrente-Rodríguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, Rossiter HB, Gao W. 2020. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter. 3(6):1981–1998. doi:10.1016/j.matt.2020.09.027.
  • Tsilingiris D, Vallianou NG, Karampela I, Liu J, Dalamaga M. 2022. Potential implications of lipid nanoparticles in the pathogenesis of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2. Metabol Open. 13:100159. doi:10.1016/j.metop.2021.100159.
  • Ullah S, Ullah A, Lee J, Jeong Y, Hashmi M, Zhu C, Joo KI, Cha HJ, Kim IS. 2020. Reusability comparison of melt-blown vs nanofiber face mask filters for use in the coronavirus pandemic. ACS Appl Nano Mater [Internet]. [accessed 2020 Sep 16] 3(7):7231–7241. doi:10.1021/acsanm.0c01562.
  • V’-Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2020. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol [Internet]. [accessed 2021 Mar 24]:1–16. doi:10.1038/s41579-020-00468-6.
  • van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, et al. 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med [Internet]. [accessed 2020 Oct 6] 382(16):1564–1567. doi:10.1056/NEJMc2004973.
  • Vaze N, Pyrgiotakis G, McDevitt J, Mena L, Melo A, Bedugnis A, Kobzik L, Eleftheriadou M, Demokritou P. 2019. Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers. Nanomedicine. 18:234–242. doi:10.1016/j.nano.2019.03.003.
  • Wang J, Pan L, Tang S, Ji JS, Shi X. 2020. Mask use during COVID-19: A risk adjusted strategy. Environ Pollut. 266(Pt 1):115099. doi:10.1016/j.envpol.2020.115099.
  • Warnes SL, Little ZR, Keevil CW. 2015a. Human Coronavirus 229E remains infectious on common touch surface materials. mBio [Internet]. [accessed 2021 Jan 30] 6(6). doi:10.1128/mBio.01697-15.
  • Warnes SL, Summersgill EN, Keevil CW. 2015b. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl Environ Microbiol [Internet]. [accessed 2021 Jan 30] 81(3):1085–1091. doi:10.1128/AEM.03280-14.
  • Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. 2021. Could nanotechnology help to end the fight against COVID-19? Review of current findings, challenges and future perspectives. IJN [Internet]. [accessed 2022 Feb 14] 16:5713–5743. doi:10.2147/IJN.S327334.
  • Yu J, Kuwentrai C, Huang J-D, Xu C. 2021. Carbon-Based nanomaterials for viral infection management. Biomicrofluidics [Internet]. [accessed 2021 Jan 25] 15(1):011501. doi:10.1063/5.0032427.
  • Yung CF, Kam K, Wong MSY, Maiwald M, Tan YK, Tan BH, Thoon KC. 2020. Environment and personal protective equipment tests for SARS-CoV-2 in the isolation room of an infant with infection. Ann Intern Med [Internet]. [accessed 2021 Mar 24] 173(3):240–242. doi:https://doi.org/10.7326/M20-0942.
  • Zahiri SH, Mayo SC, Jahedi M. 2008. Characterization of cold spray titanium deposits by X-ray microscopy and microtomography. Microsc Microanal [Internet]. [accessed 2021 Mar 22] 14(3):260–266. doi:10.1017/S1431927608080355.
  • Zhang Z, El-Moghazy AY, Wisuthiphaet N, Nitin N, Castillo D, Murphy BG, Sun G. 2020. Daylight-Induced antibacterial and antiviral nanofibrous membranes containing vitamin K derivatives for personal protective equipment. ACS Appl Mater Interfaces [Internet]. [accessed 2020 Nov 8] 12(44):49416–49430. doi:10.1021/acsami.0c14883.
  • Zhong H, Zhu Z, Lin J, Cheung CF, Lu VL, Yan F, Chan C-Y, Li G. 2020b. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano [Internet]. [accessed 2021 Jan 26] 14(5):6213–6221. doi:10.1021/acsnano.0c02250.
  • Zhong H, Zhu Z, You P, Lin J, Cheung CF, Lu VL, Yan F, Chan C-Y, Li G. 2020a. Plasmonic and superhydrophobic self-decontaminating N95 respirators. ACS Nano [Internet]. [accessed 2021 Jan 26] 14(7):8846–8854. doi:10.1021/acsnano.0c03504.
  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. 2020. A novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382(8):727–733. doi:10.1056/NEJMoa2001017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.