973
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Toxicity, metabolism, and mitigation strategies of acrylamide: a comprehensive review

ORCID Icon, , , , , ORCID Icon, , ORCID Icon, , & ORCID Icon show all

References

  • Abboudi M, Al-Bachir M, Koudsi Y, Jouhara H. 2016. Combined effects of gamma irradiation and blanching process on acrylamide content in fried potato strips. Int J Food Prop. 19(7):1447–1454. DOI:10.1080/10942912.2014.968790.
  • Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. 2020. Dietary intake of acrylamide and risk of breast, endometrial, and ovarian cancers: a systematic review and dose–response meta-analysisacrylamide and breast, endometrial, and ovarian cancer risk. Cancer Epidemiol Biomarkers Prev. 29(6):1095–1106. DOI:10.1158/1055-9965.EPI-19-1628.
  • Agamy N. 2013. Pilot screening of acrylamide level in some Egyptian brands of potato and corn products. J High Inst Public Health. 43(1):13–21. DOI:10.21608/jhiph.2013.19985.
  • Akıllıoglu HG, Gökmen V. 2014. Mitigation of acrylamide and hydroxymethyl furfural in instant coffee by yeast fermentation. Food Res Int. 61:252–256. doi:10.1016/j.foodres.2013.07.057.
  • Akkurt K, Mogol BA, Gökmen V. 2021. Mitigation of acrylamide in baked potato chips by vacuum baking and combined conventional and vacuum baking processes. Lwt. 144:111211. doi:10.1016/j.lwt.2021.111211.
  • Alafeef AK, Ariffin F, Zulkurnain M. 2020. Organic selenium as antioxidant additive in mitigating acrylamide in coffee beans roasted via conventional and superheated steam. Foods. 9(9):1197. DOI:10.3390/foods9091197.
  • Al-Asmar A, Naviglio D, Giosafatto CVL, Mariniello L. 2018. Hydrocolloid-Based coatings are effective at reducing acrylamide and oil content of French fries. Coat. 8(4):147. DOI:10.3390/coatings8040147.
  • Anese M, Nicoli MC, Verardo G, Munari M, Mirolo G, Bortolomeazzi R. 2014. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chem. 145:168–172. doi:10.1016/j.foodchem.2013.08.047.
  • Anese M, Suman M, Nicoli MC. 2010. Acrylamide removal from heated foods. Food Chem. 119(2):791–794. DOI:10.1016/j.foodchem.2009.06.043.
  • Antunes-Rohling A, Ciudad-Hidalgo S, Mir-Bel J, Raso J, Cebrián G, Álvarez I. 2018. Ultrasound as a pretreatment to reduce acrylamide formation in fried potatoes. Innovative Food Sci Emerging Technol. 49:158–169. doi:10.1016/j.ifset.2018.08.010.
  • Å VG, Olsson KM, Sjöholm IM, Skog KI. 2010. Acrylamide in crisps: effect of blanching studied on long-term stored potato clones. J Food Compos Anal. 23(2):194–198. DOI:10.1016/j.jfca.2009.07.009.
  • Atabati H, Abouhamzeh B, Abdollahifar M-A, Javadinia SS, Bajestani SG, Atamaleki A, Raoofi A, Fakhri Y, Oliveira CA, Khaneghah AM. 2020. The association between high oral intake of acrylamide and risk of breast cancer: an updated systematic review and meta-analysis. Trends Food Sci Technol. 100:155–163. doi:10.1016/j.tifs.2020.04.006.
  • Bakhtiary D, Asadollahi S, Ardakani SAY. 2014. The effect of blanching process on acrylamide formation in potato crisps. Int J Farming Allied Sci. 3(12):1220–1224.
  • Balasubramaniam V, Martinez-Monteagudo SI, Gupta R. 2015. Principles and application of high pressure–based technologies in the food industry. Annu Rev Food Sci Technol. 6(1):435–462. DOI:10.1146/annurev-food-022814-015539.
  • Banchero M, Pellegrino G, Manna L. 2013. Supercritical fluid extraction as a potential mitigation strategy for the reduction of acrylamide level in coffee. J Food Eng. 115(3):292–297. DOI:10.1016/j.jfoodeng.2012.10.045.
  • Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, Bartkevics V. 2013a. Effect of lactic acid fermentation of lupine wholemeal on acrylamide content and quality characteristics of wheat-lupine bread. Int J Food Sci Nutr. 64(7):890–896. DOI:10.3109/09637486.2013.805185.
  • Bartkiene E, Jakobsone I, Juodeikiene G, Vidmantiene D, Pugajeva I, C Bartkevics VJF. 2013b. Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control. 30(1):35–40. DOI:10.1016/j.foodcont.2012.07.012.
  • Bartkiene E, Jakobsone I, Pugajeva I, Bartkevics V, Zadeike D, Juodeikiene G. 2016. Reducing of acrylamide formation in wheat biscuits supplemented with flaxseed and lupine. LWT-Food Sci Technol. 65:275–282. doi:10.1016/j.lwt.2015.08.002.
  • Başaran B, Aydın F. 2022. Determination of acrylamide levels in infant formulas and baby biscuits sold in Turkey. Lett Appl NanoBiosci. 11:3155–3165.
  • Basaran B, Faiz O. 2022. Determining the levels of acrylamide in some traditional foods unique to Turkey and risk assessment. Iran J Pharm Res. 21(1): doi:10.5812/ijpr.123948.
  • Başaran B, Kanbur E, Birinci C, Aydın F. 2021. Determination of acrylamide and 5-hydroxymethyl-2-furfural (HMF) levels and related parameters in Turkish pekmez (a traditional fruit product). J Food Qual Hazards Control. 8(4):169–177.
  • Başaran B, Turk H. 2021. The influence of consecutive use of different oil types and frying oil in French fries on the acrylamide level. J Food Compos Anal. 104:104177. doi:10.1016/j.jfca.2021.104177.
  • Baskar G, Aiswarya R. 2018. Overview on mitigation of acrylamide in starchy fried and baked foods. J Sci Food Agric. 98(12):4385–4394. DOI:10.1002/jsfa.9013.
  • Bedade DK, Sutar YB, Singhal RS. 2019. Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: process parameters and removal of acrylamide from coffee. Food Chem. 275:95–104. doi:10.1016/j.foodchem.2018.09.090.
  • Bertuzzi T, Martinelli E, Mulazzi A, Rastelli S. 2020. Acrylamide determination during an industrial roasting process of coffee and the influence of asparagine and low molecular weight sugars. Food Chem. 303:125372. doi:10.1016/j.foodchem.2019.125372.
  • Bethke PC. 2018. Progress and successes of the specialty crop research initiative on acrylamide reduction in processed potato products. Am J Potato Res. 95(4):328–337. DOI:10.1007/s12230-018-9660-2.
  • Boroushaki MT, Nikkhah E, Kazemi A, Oskooei M, Raters M. 2010. Determination of acrylamide level in popular Iranian brands of potato and corn products. Food Chem Toxicol. 48(10):2581–2584. DOI:10.1016/j.fct.2010.06.011.
  • Bortolomeazzi R, Munari M, Anese M, Verardo G. 2012. Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC–MS/MS. Food Chem. 135(4):2687–2693. DOI:10.1016/j.foodchem.2012.07.057.
  • Budryn G, Nebesny E, Oracz J. 2015. Correlation between the stability of chlorogenic acids, antioxidant activity and acrylamide content in coffee beans roasted in different conditions. Int J Food Prop. 18(2):290–302. DOI:10.1080/10942912.2013.805769.
  • Capuano E, Fogliano V. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci Technol. 44(4):793–810. DOI:10.1016/j.lwt.2010.11.002.
  • Cha M. 2013. Enzymatic control of the acrylamide level in coffee. Eur Food Res Technol. 236(3):567–571. DOI:10.1007/s00217-013-1927-8.
  • Das AB, Srivastav PP. 2012. Acrylamide in snack foods. Toxicol Mech Methods. 22(3):163–169. DOI:10.3109/15376516.2011.623329.
  • Dehghannya J, Naghavi EA, Ghanbarzadeh B. 2016. Frying of potato strips pretreated by ultrasound‐assisted air‐drying. J Food Process Preserv. 40(4):583–592. DOI:10.1111/jfpp.12636.
  • Deribew HA, Woldegiorgis AZ. 2021. Acrylamide levels in coffee powder, potato chips and French fries in Addis Ababa city of Ethiopia. Food Control. 123:107727. doi:10.1016/j.foodcont.2020.107727.
  • Dias EC, Borém FM, Pereira RGFA, Guerreiro MC. 2012. Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. Eur Food Res Technol. 234(1):25–32. DOI:10.1007/s00217-011-1607-5.
  • Dias FFG, Junior SB, Hantao LW, Augusto F, Sato HH. 2017. Acrylamide mitigation in French fries using native l-asparaginase from Aspergillus oryzae CCT 3940. LWT-Food Sci Technol. 76:222–229. doi:10.1016/j.lwt.2016.04.017.
  • Di Francesco A, Mari M, Ugolini L, Parisi B, Genovese J, Lazzeri L, Baraldi E. 2019. Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. Int J Food Microbiol. 289:168–173. doi:10.1016/j.ijfoodmicro.2018.09.018.
  • Dourado C, Pinto C, Barba FJ, Lorenzo JM, Delgadillo I, Saraiva JA. 2019. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci Technol. 88:274–289. doi:10.1016/j.tifs.2019.03.015.
  • Dourado C, Pinto CA, Cunha SC, Casal S, Saraiva JA. 2020. A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology. Innovative Food Sci Emerging Technol. 60:102310. doi:10.1016/j.ifset.2020.102310.
  • EC. 2017. European Commission regulation 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off J Eur Union. 304(24): 24–44.
  • EFSA. 2015. Scientific Opinion on acrylamide in food. EFSA panel on contaminants in the food Chain (CONTAM). Efsa J. 13(6):4104. doi:10.2903/j.efsa.2015.4139.
  • Elbassiony KRA. 2020. Reduction of acrylamide formation in potato chips by gamma irradiation and some pretreatments processing. Ann Agric Sci Moshtohor. 58(1):45–52. DOI:10.21608/assjm.2020.108480.
  • Erbas M, Sekerci H, Arslan S, Durak AN. 2012. Effect of sodium metabisulfite addition and baking temperature on Maillard reaction in bread. J Food Qual. 35(2):144–151. DOI:10.1111/j.1745-4557.2012.00439.x.
  • Erkekoglu P, Baydar T. 2014. Acrylamide neurotoxicity. Nutr Neurosci. 17(2):49–57. DOI:10.1179/1476830513Y.0000000065.
  • Erkekoğlu P, Baydar T. 2010. Toxicity of acrylamide and evaluation of its exposure in baby foods. Nutr Res Rev. 23(2):323–333. DOI:10.1017/S0954422410000211.
  • Esposito F, Nolasco A, Caracciolo F, Velotto S, Montuori P, Romano R, Stasi T, Cirillo T. 2021. Acrylamide in baby foods: a probabilistic exposure assessment. Foods. 10(12):2900. DOI:10.3390/foods10122900.
  • Fernández A, Talaverano M, Pérez-Nevado F, Boselli E, Cordeiro A, Martillanes S, Foligni R, Martín-Vertedor D. 2020. Evaluation of phenolics and acrylamide and their bioavailability in high hydrostatic pressure treated and fried table olives. J Food Process Preserv. 44(4):e14384. DOI:10.1111/jfpp.14384.
  • Filippini T, Halldorsson TI, Capitão C, Martins R, Giannakou K, Hogervorst J, Vinceti M, Åkesson A, Leander K, Katsonouri A. 2022. Dietary acrylamide exposure and risk of site-specific cancer: a systematic review and dose-response meta-analysis of epidemiological studies. Front Nutr. 9. doi:10.3389/fnut.2022.875607.
  • Genovese J, Tappi S, Luo W, Tylewicz U, Marzocchi S, Marziali S, Romani S, Ragni L, Rocculi P. 2019. Important factors to consider for acrylamide mitigation in potato crisps using pulsed electric fields. Innovative Food Sci Emerging Technol. 55:18–26. doi:10.1016/j.ifset.2019.05.008.
  • Gülcan Ü, Uslu CC, Mutlu C, Arslan-Tontul S, Erbaş M. 2020. Impact of inert and inhibitor baking atmosphere on HMF and acrylamide formation in bread. Food Chem. 332:127434. doi:10.1016/j.foodchem.2020.127434.
  • Halford NG. 2018. Managing acrylamide at the agricultural stage: variety selection, crop management, and the prospects for solving the acrylamide problem through plant breeding and biotechnology. Encycl Food Chem, Elsevier. 1:559–568.
  • Halford NG, Raffan S, Oddy J. 2022. Progress towards the production of potatoes and cereals with low acrylamide-forming potential. Curr Opin Food Sci. 47:100887. doi:10.1016/j.cofs.2022.100887.
  • Hariri E, Abboud MI, Demirdjian S, Korfali S, Mroueh M, Taleb RI. 2015. Carcinogenic and neurotoxic risks of acrylamide and heavy metals from potato and corn chips consumed by the Lebanese population. J Food Compos Anal. 42:91–97. doi:10.1016/j.jfca.2015.03.009.
  • Hendriksen HV, Budolfsen G, Baumann MJ. 2013. Asparaginase for acrylamide mitigation in food. Aspects Appl Biol Aspects 2013 (116):41–50. English.
  • Herrero M, Mendiola JA, Cifuentes A, Ibáñez E. 2010. Supercritical fluid extraction: recent advances and applications. J Chromatogr a. 1217(16):2495–2511. DOI:10.1016/j.chroma.2009.12.019.
  • Hwang I, Kwon H. 2022. Acrylamide formation in carbohydrate-rich food powders consumed in Korea. Qual Assur Saf Crops Foods. 14(3):43–54. DOI:10.15586/qas.v14i3.1054.
  • Ikeda S, Sobue T, Kitamura T, Ishihara J, Kotemori A, Zha L, Liu R, Sawada N, Iwasaki M, Tsugane S. 2021. Dietary acrylamide intake and the risks of renal cell, prostate, and bladder cancers: a Japan public health center-based prospective study. Nutrients. 13(3):780. DOI:10.3390/nu13030780.
  • Jaeger H, Janositz A, Knorr D. 2010. The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol Biol. 58(3):207–213. DOI:10.1016/j.patbio.2009.09.016.
  • JECFA. 2011. Acrylamide: evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA).
  • Jiang F, Teng M, Zhu YX, Li YJ. 2020. No association between dietary acrylamide and renal cell carcinoma: an updated meta‐analysis. J Sci Food Agric. 100(7):3071–3077. DOI:10.1002/jsfa.10339.
  • Jin C, Wu X, Zhang Y. 2013. Relationship between antioxidants and acrylamide formation: a review. Food Res Int. 51(2):611–620. DOI:10.1016/j.foodres.2012.12.047.
  • Kalaivani M, Saleena UV, Katapadi KGK, Kumar YP, Nayak D. 2018. Effect of acrylamide ingestion on reproductive organs of adult male wistar rats. J Clin Diagn Res. 12(11): 1–5.
  • Kalita D, Jayanty SS. 2013. Reduction of acrylamide formation by vanadium salt in potato French fries and chips. Food Chem. 138(1):644–649. DOI:10.1016/j.foodchem.2012.09.123.
  • Kamkar A, Qajarbeygi P, Jannat B, Haj Hosseini Babaei A, Misaghi A, Molaee Aghaee E. 2015. The inhibitory role of autolysed yeast of Saccharomyces cerevisiae, vitamins B3 and B6 on acrylamide formation in potato chips. Toxin Rev. 34(1):1–5. DOI:10.3109/15569543.2014.974765.
  • Karami M, Akbari-Adergani B, Jahed Khaniki G, Shariatifar N, Sadighara P. 2022. Determination and health risk assessment of acrylamide levels in instant coffee products available in Tehran markets by GC-MS. Int J Environ Anal Chem. 1–10. doi:10.1080/03067319.2022.2076225.
  • Kito K, Ishihara J, Kotemori A, Zha L, Liu R, Sawada N, Iwasaki M, Sobue T, Tsugane S. 2020. Dietary acrylamide intake and the risk of pancreatic cancer: the Japan Public Health Center-based prospective study. Nutrients. 12(11):3584. DOI:10.3390/nu12113584.
  • Kobayashi R, Enomoto M, Higa M, Okuno I, Kizaki F, Taniguchi A, Enomoto T. 2019. Usefulness of barley flour for retention of palatability and antioxidant capacity and inhibition of acrylamide formation in flour products cooked at high temperatures. Int J Gastr Food Sci. 17:100163. doi:10.1016/j.ijgfs.2019.100163.
  • Kobayashi A, Gomikawa S, Oguro A, Maeda S, Yamazaki A, Sato S, Maekawa H. 2019. The effect of high hydrostatic pressure on acrylamide generation in aqueous reaction systems using asparagine and glucose. Food Sci Technol Res. 25(4):587–596. DOI:10.3136/fstr.25.587.
  • Kocadağlı T, Gökmen V. 2015. Metabolism of acrylamide in humans and biomarkers of exposure to acrylamide. Acrylamide Food: Anal, Content and Potential Health Eff.109.
  • Kocadağlı T, Göncüoğlu N, Hamzalıoğlu A, Gökmen V. 2012. In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation. Food & Function. 3(9):970–975. DOI:10.1039/c2fo30038a.
  • Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, Sobue T, Tsugane S, Group JS. 2018a. Dietary acrylamide intake and risk of breast cancer: the Japan Public Health Center‐based prospective study. Cancer Sci. 109(3):843–853. DOI:10.1111/cas.13496.
  • Kotemori A, Ishihara J, Zha L, Liu R, Sawada N, Iwasaki M, Sobue T, Tsugane S, Group JS. 2018b. Dietary acrylamide intake and the risk of endometrial or ovarian cancers in Japanese women. Cancer Sci. 109(10):3316–3325. DOI:10.1111/cas.13757.
  • Kraus D, Rokitta D, Fuhr U, Tomalik-Scharte D. 2013. The role of human cytochrome P450 enzymes in metabolism of acrylamide in vitro. Toxicol Mech Methods. 23(5):346–351. DOI:10.3109/15376516.2012.759307.
  • Krishnakumar T, Visvanathan R, Meagher KA, Howard AN, Kelly D, Thurnham DI. 2014. Verification of Meso-Zeaxanthin in Fish. J Food Process Technol. 5(6):1. DOI:10.4172/2157-7110.1000335.
  • Kukurová K. 2009. Effect of inorganic salts on acrylamide formation in cereal matrices. Acrylamide Food: Anal, Content and Potential Health Eff 27 . 425–428
  • Kumar J, Das S, Teoh SL. 2018. Dietary acrylamide and the risks of developing cancer: facts to ponder. Front Nutr. 5:14. doi:10.3389/fnut.2018.00014.
  • Lachenmeier DW, Schwarz S, Teipel J, Hegmanns M, Kuballa T, Walch SG, Breitling-Utzmann CM. 2019. Potential antagonistic effects of acrylamide mitigation during coffee roasting on furfuryl alcohol, furan and 5-hydroxymethylfurfural. Toxics. 7(1):1. DOI:10.3390/toxics7010001.
  • Li D, Chen Y, Zhang Y, Lu B, Jin C, Wu X, Zhang Y. 2012. Study on mitigation of acrylamide formation in cookies by 5 antioxidants. J Food Sci. 77(11):C1144–C1149. DOI:10.1111/j.1750-3841.2012.02949.x.
  • Lim L-T, Zwicker M, Wang X. 2019. Coffee: one of the most consumed beverages in the world, Elsevier.
  • Liu J, Liu X, Man Y, Liu Y. 2018. Reduction of acrylamide content in bread crust by starch coating. J Sci Food Agric. 98(1):336–345. DOI:10.1002/jsfa.8476.
  • Liu H, Li X, Yuan Y. 2020. Mitigation effect of sodium alginate on acrylamide formation in fried potato chips system based on response surface methodology. J Food Sci. 85(8):2615–2621. DOI:10.1111/1750-3841.15343.
  • Liu Y, Wang P, Chen F, Yuan Y, Zhu Y, Yan H, Hu X. 2015. Role of plant polyphenols in acrylamide formation and elimination. Food Chem. 186:46–53. doi:10.1016/j.foodchem.2015.03.122.
  • Liu J, Wang Y, Man Y, Liu Y, Zhang S, Diao X. 2018. Synergistic effect of glycine and starch coating on reduction of acrylamide in bread. Shipin Kexue/food Sci. 39(16):34–39.
  • Liu R, Zha L, Sobue T, Kitamura T, Ishihara J, Kotemori A, Ikeda S, Sawada N, Iwasaki M, Tsugane S. 2020. Dietary acrylamide intake and risk of lung cancer: the Japan public health center based prospective study. Nutrients. 12(8):2417. DOI:10.3390/nu12082417.
  • Maan AA, Anjum MA, Khan MKI, Nazir A, Saeed F, Afzaal M, Aadil RM. 2020. Acrylamide formation and different mitigation strategies during food processing–A review. Food Rev Int 38. 1–18
  • Madihah KK, Zaibunnisa A, Norashikin S, Rozita O, Misnawi J. 2012. Optimization of roasting conditions for high-quality robusta coffee. APCBEE Proc. 4:209–214. doi:10.1016/j.apcbee.2012.11.035.
  • Matoso V, Bargi-Souza P, Ivanski F, Romano MA, Romano RM. 2019. Acrylamide: a review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem. 283:422–430. doi:10.1016/j.foodchem.2019.01.054.
  • Matthäus B, Haase NU. 2014. Acrylamide–still a matter of concern for fried potato food? Eur J Lipid Sci Technol. 116(6):675–687. DOI:10.1002/ejlt.201300281.
  • McFadden J, Huffman W. 2017. Consumer demand for low-acrylamide-forming potato products: evidence from lab auctions. Am J Potato Res. 94(5):465–480. DOI:10.1007/s12230-017-9577-1.
  • Medeiros Vinci R, Mestdagh F, Van Poucke C, Kerkaert B, De Muer N, Denon Q, Van Peteghem C, De Meulenaer B. 2011. Implementation of acrylamide mitigation strategies on industrial production of French fries: challenges and pitfalls. J Agric Food Chem. 59(3):898–906. DOI:10.1021/jf1042486.
  • Meghavarnam AK, Janakiraman S. 2018. Evaluation of acrylamide reduction potential of l-asparaginase from Fusarium culmorum (ASP-87) in starchy products. Lwt. 89:32–37. doi:10.1016/j.lwt.2017.09.048.
  • Mesias M, Delgado-Andrade C, Holgado F, González-Mulero L, Morales FJ. 2021. Effect of consumer’s decisions on acrylamide exposure during the preparation of French fries. part 1: frying conditions. Food Chem Toxicol. 147:111857. doi:10.1016/j.fct.2020.111857.
  • Mesías M, Delgado-Andrade C, Holgado F, Morales FJ. 2020. Impact of the consumer cooking practices on acrylamide formation during the preparation of French fries in Spanish households. Food Addit Contam, Part a. 37(2):254–266. DOI:10.1080/19440049.2019.1693637.
  • Mesías M, Sáez-Escudero L, Morales FJ, Delgado-Andrade C. 2019. Reassessment of acrylamide content in breakfast cereals. Evolution of the Spanish market from 2006 to 2018. Food Control. 105:94–101. doi:10.1016/j.foodcont.2019.05.026.
  • Michalak J, Gujska E, Czarnowska M, Klepacka J, Nowak F. 2016. Effect of storage on acrylamide and 5-hydroxymethylfurfural contents in selected processed plant products with long shelf-life. Plant Foods Hum Nutr. 71(1):115–122. DOI:10.1007/s11130-015-0523-4.
  • Mojska H, Gielecińska I, Szponar L, Ołtarzewski M. 2010. Estimation of the dietary acrylamide exposure of the Polish population. Food Chem Toxicol. 48(8–9):2090–2096. DOI:10.1016/j.fct.2010.05.009.
  • Mousa RMA. 2018. Simultaneous inhibition of acrylamide and oil uptake in deep fat fried potato strips using gum Arabic-based coating incorporated with antioxidants extracted from spices. Food Hydrocoll. 83:265–274. doi:10.1016/j.foodhyd.2018.05.007.
  • Mulla MZ, Bharadwaj VR, Annapure US, Singhal RS. 2010. Effect of damaged starch on acrylamide formation in whole wheat flour based Indian traditional staples, chapattis and pooris. Food Chem. 120(3):805–809. DOI:10.1016/j.foodchem.2009.11.016.
  • Mulla MZ, Bharadwaj VR, Annapure US, Variyar PS, Sharma A, Singhal RS. 2011. Acrylamide content in fried chips prepared from irradiated and non-irradiated stored potatoes. Food Chem. 127(4):1668–1672. DOI:10.1016/j.foodchem.2011.02.034.
  • Muttucumaru N, Powers SJ, Elmore JS, Dodson A, Briddon A, Mottram DS, Halford NG. 2017. Acrylamide-Forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chem. 220:76–86. doi:10.1016/j.foodchem.2016.09.199.
  • Narita Y, Inouye K. 2014. Decrease in the acrylamide content in canned coffee by heat treatment with the addition of cysteine. J Agric Food Chem. 62(50):12218–12222. DOI:10.1021/jf5035288.
  • Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A, Mousavi Khaneghah A. 2020. Acrylamide content of collected food products from Tehran’s market: a risk assessment study. Environ Sci Pollut Res. 27(24):30558–30570. DOI:10.1007/s11356-020-09323-w.
  • Nematollahi A, Meybodi NM, Khaneghah AM. 2021. An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: perspectives and future challenges. Food Control.108144.
  • Nunes L, Martins E, Perrone ÍT, de Carvalho AF. 2019. The Maillard reaction in powdered infant formula. J Food Nutr Res. 7(1):33–40. DOI:10.12691/jfnr-7-1-5.
  • Obón-Santacana M, Lujan-Barroso L, Travis RC, Freisling H, Ferrari P, Severi G, Baglietto L, Boutron-Ruault M-C, Fortner RT, Ose J. 2016. Acrylamide and glycidamide hemoglobin adducts and epithelial ovarian cancer: a nested case–control study in nonsmoking postmenopausal women from the EPIC CohortBiomarkers of acrylamide and ovarian cancer risk in EPIC. Cancer Epidemiol Biomarkers Prev. 25(1):127–134. DOI:10.1158/1055-9965.EPI-15-0822.
  • Onishi Y, Prihanto AA, Yano S, Takagi K, Umekawa M, Wakayama M. 2015. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis. 3 Biotech. 5(5):783–789. DOI:10.1007/s13205-015-0278-5.
  • Oroian M, Amariei S, Gutt G. 2015. Acrylamide in Romanian food using HPLC-UV and a health risk assessment. Food Addit Contam, Part B. 8(2):136–141. DOI:10.1080/19393210.2015.1010240.
  • Pacetti D, Gil E, Frega NG, Álvarez L, Dueñas P, Garzón A, Lucci P. 2015. Acrylamide levels in selected Colombian foods. Food Addit Contam, Part B. 8(2):99–105. DOI:10.1080/19393210.2014.995236.
  • Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. 2020. Review of research into the determination of acrylamide in foods. Foods. 9(4):524. DOI:10.3390/foods9040524.
  • Paul V, Tiwary BN. 2020. An investigation on the acrylamide mitigation potential of l-asparaginase from Aspergillus terreus BV-C strain. Biocatal Agric Biotechnol. 27:101677. doi:10.1016/j.bcab.2020.101677.
  • Pedreschi F, Ferrera A, Bunger A, Alvarez F, Huamán-Castilla NL, Mariotti-Celis MS. 2021. Ultrasonic-Assisted leaching of glucose and fructose as an alternative mitigation technology of acrylamide and 5-hydroxymethylfurfural in potato chips. Innovative Food Sci Emerging Technol. 73:102752. doi:10.1016/j.ifset.2021.102752.
  • Pelin BGC, Cengiz MF. 2015. Acrylamide contents of commonly consumed bread types in Turkey. Int J Food Prop. 18(4):833–841. DOI:10.1080/10942912.2013.877028.
  • Pereira CG, Meireles MAA. 2010. Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol. 3(3):340–372. DOI:10.1007/s11947-009-0263-2.
  • Pico Y. 2013. Ultrasound-Assisted extraction for food and environmental samples. TrAc Trends Anal Chem. 43:84–99. doi:10.1016/j.trac.2012.12.005.
  • Porta R, Mariniello L, Di Pierro P, Sorrentino A, Giosafatto CVL. 2011. Transglutaminase crosslinked pectin-and chitosan-based edible films: a review. Crit Rev Food Sci Nutr. 51(3):223–238. DOI:10.1080/10408390903548891.
  • Pundir CS, Yadav N, Chhillar AK. 2019. Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: a review. Trends Food Sci Technol. 85:211–225. doi:10.1016/j.tifs.2019.01.003.
  • Qi Y, Zhang H, Wu G, Zhang H, Gu L, Wang L, Qian H, Qi X. 2018. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chem. 250:98–104. doi:10.1016/j.foodchem.2018.01.012.
  • Raffan S, Halford NG. 2019. Acrylamide in food: progress in and prospects for genetic and agronomic solutions. Ann Appl Biol. 175(3):259–281. DOI:10.1111/aab.12536.
  • Rannou C, Laroque D, Renault E, Prost C, Sérot T. 2016. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods. Food Res Int. 90:154–176. doi:10.1016/j.foodres.2016.10.037.
  • Recio L, Friedman M, Marroni D, Maynor T, Chepelev NL. 2017. Impact of acrylamide on calcium signaling and cytoskeletal filaments in testes from F344 rat. Int J Toxicol. 36(2):124–132. DOI:10.1177/1091581817697696.
  • Rifai L, Saleh FA. 2020. A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. Int J Toxicol. 39(2):93–102. DOI:10.1177/1091581820902405.
  • Rosen C, Sun N, Olsen N, Thornton M, Pavek M, Knowles L, Knowles NR. 2018. Impact of agronomic and storage practices on acrylamide in processed potatoes. Am J Potato Res. 95(4):319–327. DOI:10.1007/s12230-018-9659-8.
  • Salazar R, Arámbula-Villa G, Hidalgo FJ, Zamora R. 2012. Mitigating effect of piquin pepper (Capsicum annuum L. var. Aviculare) oleoresin on acrylamide formation in potato and tortilla chips. LWT-Food Sci Technol. 48(2):261–267. DOI:10.1016/j.lwt.2012.03.024.
  • Sansano M, Juan-Borrás M, Escriche I, Andrés A, Heredia A. 2015. Effect of pretreatments and air‐frying, a novel technology, on acrylamide generation in fried potatoes. J Food Sci. 80(5):T1120–T1128. DOI:10.1111/1750-3841.12843.
  • Santos CS, Cunha SC, Casal S. 2017. Deep or air frying? A comparative study with different vegetable oils. Eur J Lipid Sci Technol. 119(6):1600375. DOI:10.1002/ejlt.201600375.
  • Sarwar MH, Sarwar MF, Sarwar M, Qadri NA, Moghal S. 2013. The importance of cereals (Poaceae: gramineae) nutrition in human health: a review. J Cereals Oilseeds. 4(3):32–35.
  • Schouten MA, Genovese J, Tappi S, Di Francesco A, Baraldi E, Cortese M, Caprioli G, Angeloni S, Vittori S, Rocculi P. 2020. Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. Innovative Food Sci Emerging Technol. 64:102397. doi:10.1016/j.ifset.2020.102397.
  • Schouten MA, Tappi S, Romani S. 2020. Acrylamide in coffee: formation and possible mitigation strategies–a review. Crit Rev Food Sci Nutr. 60(22):3807–3821. DOI:10.1080/10408398.2019.1708264.
  • Semla M, Goc Z, Martiniaková M, Omelka R, Formicki G. 2017. Acrylamide: a common food toxin related to physiological functions and health. Physiol Res. 66(2): 205–217.
  • Soares CM, Alves RC, Oliveira MBP. 2015. Elsevier. 24: 217–224.
  • Sovová H, Stateva RP. 2011. Supercritical fluid extraction from vegetable materials. Rev Chem Eng. 27(3–4):79–156. DOI:10.1515/REVCE.2011.002.
  • Sun Z, Qin R, Li D, Ji K, Wang T, Cui Z, Huang Y. 2016. A novel bacterial type II l-asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. Int J Biol Macromol. 92:232–239. doi:10.1016/j.ijbiomac.2016.07.031.
  • Sun N, Wang Y, Gupta SK, Rosen CJ. 2020. Potato tuber chemical properties in storage as affected by cultivar and nitrogen rate: implications for acrylamide formation. Foods. 9(3):352. DOI:10.3390/foods9030352.
  • Suyatma N, Ulfah K, Prangdimurti E, Ishikawa Y. 2015. Effect of blanching and pectin coating as pre-frying treatments to reduce acrylamide formation in banana chips. Int Food Res J. 22(3):936.
  • Taher IB, Hassouna M. 2016. Reduction of acrylamide formation in bread by lactic acid bacteria and Nigella sativa oil. Int Res J Eng Technol. 3: 653–658.
  • Tardiff RG, Gargas ML, Kirman CR, Carson ML, Sweeney LM. 2010. Estimation of safe dietary intake levels of acrylamide for humans. Food Chem Toxicol. 48(2):658–667. DOI:10.1016/j.fct.2009.11.048.
  • Tran NL, Barraj LM, Collinge S. 2017. Reduction in dietary acrylamide exposure—impact of potatoes with low acrylamide potential. Risk Anal. 37(9):1754–1767. DOI:10.1111/risa.12709.
  • Van Der Fels-Klerx H, Capuano E, Nguyen H, Mogol BA, Kocadağlı T, Taş NG, Hamzalıoğlu A, Van Boekel M, Gökmen V. 2014. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature–time profile effects and kinetics. Food Res Int. 57:210–217. doi:10.1016/j.foodres.2014.01.039.
  • Wang S, Yu J, Xin Q, Wang S, Copeland L. 2017. Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control. 73:230–236. doi:10.1016/j.foodcont.2016.08.002.
  • Wawrzyniak R, Jasiewicz B. 2019. Straightforward and rapid determination of acrylamide in coffee beans by means of HS-SPME/GC-MS. Food Chem. 301:125264. doi:10.1016/j.foodchem.2019.125264.
  • Xu F, Oruna-Concha M-J, Elmore JS. 2016. The use of asparaginase to reduce acrylamide levels in cooked food. Food Chem. 210:163–171. doi:10.1016/j.foodchem.2016.04.105.
  • Zaghi AN, Barbalho SM, Guiguer EL, Otoboni AM. 2019. Frying process: from conventional to air frying technology. Food Rev Int. 35(8):763–777. DOI:10.1080/87559129.2019.1600541.
  • Zamani E, Shokrzadeh M, Fallah M, Shaki F. 2017. A review of acrylamide toxicity and its mechanism. Pharm Biomed Res. 3(1):1–7. DOI:10.18869/acadpub.pbr.3.1.1.
  • Zeng X, Cheng K-W, Du Y, Kong R, Lo C, Chu IK, Chen F, Wang M. 2010. Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chem. 121(2):424–428. DOI:10.1016/j.foodchem.2009.12.059.
  • Zha L, Liu R, Sobue T, Kitamura T, Ishihara J, Kotemori A, Ikeda S, Sawada N, Iwasaki M, Tsugane S. 2021. Dietary acrylamide intake and the risk of hematological malignancies: the Japan Public Health Center-Based prospective study. Nutrients. 13(2):590. DOI:10.3390/nu13020590.
  • Zhang Y, Kahl DH, Bizimungu B, Z-X L. 2018. Effects of blanching treatments on acrylamide, asparagine, reducing sugars and colour in potato chips. J Food Sci Technol. 55(10):4028–4041. DOI:10.1007/s13197-018-3329-1.
  • Zhang D, Liu W, Li L, Zhao H-Y, Sun H-Y, Meng M-H, Zhang S, Shao M-L. 2017. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria. Food Sci Biotechnol. 26(1):271–277. DOI:10.1007/s10068-017-0036-z.
  • Zhang X, Zhang M, Adhikari B. 2020. Recent developments in frying technologies applied to fresh foods. Trends Food Sci Technol. 98:68–81. doi:10.1016/j.tifs.2020.02.007.
  • Zhivagui M, Ng AW, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L. 2019. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res. 29(4):521–531. DOI:10.1101/gr.242453.118.
  • Zhou W, Wang M, Chen J, Zhang R. 2015. The effect of biological (yeast) treatment conditions on acrylamide formation in deep-fried potatoes. Food Sci Biotechnol. 24(2):561–566. DOI:10.1007/s10068-015-0073-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.