178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The ROS/NF-κB/HK2 axis is involved in the arsenic-induced Warburg effect in human L-02 hepatocytes

, , , , , , , & ORCID Icon show all
Pages 150-165 | Received 04 Aug 2022, Accepted 04 Oct 2022, Published online: 20 Oct 2022

References

  • Basu M, Ghosh S, Roychowdhury A, Samadder, S., Das, P., Addya, S., Roy, A., Pal, D K., Roychoudhury, S., Ghosh, A., Panda, C K., et al. 2020. Integrative genomics and pathway analysis identified prevalent FA-BRCA pathway alterations in arsenic-associated urinary bladder carcinoma: chronic arsenic accumulation in cancer tissues hampers the FA-BRCA pathway. Genomics. 112(6):5055–5065. doi:10.1016/j.ygeno.2020.09.012.
  • Bouyahya A, El Menyiy N, Oumeslakht L, El Allam A, Balahbib A, Rauf A, Muhammad N, Kuznetsova E, Derkho M, Thiruvengadam M, et al. 2021. Preclinical and clinical antioxidant effects of natural compounds against oxidative stress-induced epigenetic instability in tumor cells. Antioxidants. 10(10):1553. Basel, Switzerland. doi:10.3390/antiox10101553.
  • Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. 2021. Epigenetic modifications from arsenic exposure: a comprehensive review. Sci Total Environ. 810:151218. doi:10.1016/j.scitotenv.2021.151218.
  • Chavan H, Christudoss P, Mickey K, Tessman R, Ni H-M, Swerdlow R, Krishnamurthy P. 2017. Arsenite effects on mitochondrial bioenergetics in human and mouse primary hepatocytes follow a nonlinear dose response. Oxid Med Cell Longev. 2017:9251303. doi:10.1155/2017/9251303.
  • Chen Z, Li S, Shen L, Wei X, Zhu H, Wang X, Yang M, Zheng X. 2020. NF-kappa B interacting long noncoding RNA enhances the Warburg effect and angiogenesis and is associated with decreased survival of patients with gliomas. Cell Death Dis. 11(5):323. doi:10.1038/s41419-020-2520-2.
  • Chen JY, XX H, Ma C, Wu X-M, Wan X-L, Xing Z-K, Pei Q-Q, Dong X-P, Liu D-X, Xiong W-C, et al. 2017. Netrin-1 promotes glioma growth by activating NF-κB via UNC5A. Sci Rep. 7(1):5454. doi:10.1038/s41598-017-05707-0.
  • Chiu HF, Ho SC, Wang LY, Wu TN, Yang CY. 2004. Does arsenic exposure increase the risk for liver cancer? J Toxicol Environ Health A. 67(19):1491–1500. doi:10.1080/15287390490486806.
  • Deng C, Li H, Li Q. 2022. F-box protein 17 promotes glioma progression by regulating glycolysis pathway. Biosci Biotechnol Biochem. 86(4):455–463. doi:10.1093/bbb/zbac008.
  • Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M. 2022. Cytokine receptors—regulators of antimycobacterial immune response. Int J Mol Sci. 23(3):1112. doi:10.3390/ijms23031112.
  • Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lanni C. 2022. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther. 7(1):41. doi:10.1038/s41392-022-00899-y.
  • Flora SJ. 2011. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 51(2):257–281. doi:10.1016/j.freeradbiomed.2011.04.008.
  • Guber RS, Gonzalez Mac Donald M, Aleman MN. 2021. Evaluation of salivary protein patterns among a rural population exposed and non-exposed to arsenic-contaminated drinking water in areas of Tucumán (Argentina): a pilot study. 29:e20200939. doi:10.1590/1678-7757-2020-0939.
  • Hayden MS, Ghosh S. 2004. Signaling to NF-kappaB. Genes Dev. 18(18):2195–2224. doi:10.1101/gad.1228704.
  • Hayden MS, Ghosh S. 2008. Shared principles in NF-kappaB signaling. Cell. 132(3):344–362. doi:10.1016/j.cell.2008.01.020.
  • Hu Y, Xiao T, Zhang A. 2021. Associations between and risks of trace elements related to skin and liver damage induced by arsenic from coal burning. Ecotoxicol Environ Saf. 208:111719. doi:10.1016/j.ecoenv.2020.111719.
  • Jamaluddin M, Wang S, Boldogh I, Tian B, Brasier AR. 2007. TNF-alpha-induced NF-kappaB/rela Ser(276) phosphorylation and enhanceosome formation is mediated by an ROS-dependent PKAc pathway. Cell Signal. 19(7):1419–1433. doi:10.1016/j.cellsig.2007.01.020.
  • Johnson RF, Perkins ND. 2012. Nuclear factor-κB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci. 37(8):317–324. doi:10.1016/j.tibs.2012.04.002.
  • Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. 2021. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: a promising strategy in combating cancer. Biofactors. 48(2):359–383. doi:10.1002/biof.1799.
  • Lee CH, Wu SB, Hong CH, Liao W-T, Wu C-Y, Chen G-S, Wei Y-H, Yu H-S. 2011. Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers. Am J Pathol. 178(5):2066–2076. doi:10.1016/j.ajpath.2011.01.056.
  • Lingappan K. 2018. NF-κB in oxidative stress. Curr Opin Toxicol. 7:81–86. doi:10.1016/j.cotox.2017.11.002.
  • Lin X, Tago K, Okazaki N, So T, Takahashi K, Mashino T, Tamura H, Funakoshi-Tago M. 2021. The indole-hydantoin derivative exhibits anti-inflammatory activity by preventing the transactivation of NF-κB through the inhibition of NF-κB p65 phosphorylation at Ser276. Int Immunopharmacol. 100:108092. doi:10.1016/j.intimp.2021.108092.
  • Lin YC, Wang FF. 2008. Mechanisms underlying the pro-survival pathway of p53 in suppressing mitotic death induced by adriamycin. Cell Signal. 20(1):258–267. doi:10.1016/j.cellsig.2007.10.017.
  • Li X, Wang Y, Li M, Wang H, Dong X. 2021. Metal complexes or chelators with ROS regulation capacity: promising candidates for cancer treatment. Molecules. 27(1). doi:10.3390/molecules27010148.
  • Li J, Zhang J, Xie F, Peng J, Wu X. 2018. Macrophage migration inhibitory factor promotes Warburg effect via activation of the NF‑κB/HIF‑1α pathway in lung cancer. Int J Mol Med. 41(2):1062–1068. doi:10.3892/ijmm.2017.3277.
  • Lou Q, Chen F, Li B, Zhang, M., Yin, F., Liu, X., Zhang, Z., Zhang, X., Fan, C., Gao, Y., Yang, Y., et al. 2022. Malignant growth of arsenic-transformed cells depends on activated Akt induced by reactive oxygen species. Int J Environ Health Res. 1–15. doi:10.1080/09603123.2021.2023113.
  • Lu JH, Liao WT, Lee CH, Chang KL, Ke HL, Yu HS. 2018. Δnp63 promotes abnormal epidermal proliferation in arsenical skin cancers. Toxicol in vitro. 53:57–66. doi:10.1016/j.tiv.2018.07.011.
  • Luo F, Liu X, Ling M, Lu L, Shi L, Lu X, Li J, Zhang A, Liu Q. 2016. The lncRNA MALAT1, acting through HIF-1α stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochim Biophys Acta. 1862(9):1685–1695. doi:10.1016/j.bbadis.2016.06.004.
  • Luo F, Zou Z, Liu X, LingM, WangQ, WangQ, LuL, Shi L, Le, LiuY, LiuQ, ZhangA, A, et al. 2017. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis. 38(6):615–626. doi:10.1093/carcin/bgx034.
  • Medda N, De SK, Maiti S. 2021. Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. Ecotoxicol Environ Saf. 208:111752. doi:10.1016/j.ecoenv.2020.111752.
  • Mozaffarian F, Dehghani MA, Vanani AR, Mahdavinia M. 2021. Protective effects of alpha lipoic acid against arsenic induced oxidative stress in isolated rat liver mitochondria. doi:10.1007/s12011-021-02712-3.
  • Nasir Kansestani A, Mansouri K, Hemmati S, Zare ME, Moatafaei A. 2019. High glucose-reduced apoptosis in human breast cancer cells is mediated by activation of NF-κB. Iran J Allergy Asthma Immunol. 18(2):153–162. doi:10.18502/ijaai.v18i2.918.
  • Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC, Arellano-Mendoza, M.G., Tamay-Cach, F., Valenzuela-Limón, O.L., García-Montalvo, E.A., Hernández-Zavala, A. 2020. Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol. 110:104539. doi:10.1016/j.yrtph.2019.104539.
  • Presek P, Reinacher M, Eigenbrodt E. 1988. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett. 242(1):194–198. doi:10.1016/0014-5793(88)81014-7.
  • Qian Y, Castranova V, Shi X. 2003. New perspectives in arsenic-induced cell signal transduction. J Inorg Biochem. 96(2–3):271–278. doi:10.1016/s0162-0134(03)00235-6.
  • Quiroga J, Alarcón P, Manosalva C, Teuber S, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. 2021. Metabolic reprogramming and inflammatory response induced by D-lactate in bovine fibroblast-like synoviocytes depends on HIF-1 activity. Front Vet Sci. 8:625347. doi:10.3389/fvets.2021.625347.
  • Qu Z, Lu X, Qu Y, Tao T, Liu X, Li X. 2021. Attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities induced by tunicamycin or hypoxia/reoxygenation in neonatal rat cardiomyocytes by SERCA2a overexpression. Int J Mol Med. 47(6). doi:10.3892/ijmm.2021.4946.
  • Ran S, Ren Q, Li S. 2021. JAK2/STAT3 in role of arsenic-induced cell proliferation: a systematic review and meta-analysis. Rev Environ Health. 37(3):451–461. doi:10.1515/reveh-2021-0051.
  • Renu K, Saravanan A, Elangovan A, Ramesh, S., Annamalai, S., Namachivayam, A., Abel, P., Madhyastha, H., Madhyastha, R., Maruyama, M., Balachandar, V., et al. 2020. An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci. 260:118438. doi:10.1016/j.lfs.2020.118438.
  • Rossman TG, Uddin AN, Burns FJ. 2004. Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol. 198(3):394–404. doi:10.1016/j.taap.2003.10.016.
  • Ruan Y, Fang X, Guo T, Liu, Y., Hu, Yu, Wang, X., Hu, Y., Gao, L., Li, Y., Pi, J., Xu, Y., et al. 2022. Metabolic reprogramming in the arsenic carcinogenesis. Ecotoxicol Environ Saf. 229:113098. doi:10.1016/j.ecoenv.2021.113098.
  • Schuhmacher-Wolz U, Dieter HH, Klein D, Schneider K. 2009. Oral exposure to inorganic arsenic: evaluation of its carcinogenic and non-carcinogenic effects. Crit Rev Toxicol. 39(4):271–298. doi:10.1080/10408440802291505.
  • Shin E, Koo JS. 2021. Glucose metabolism and glucose transporters in breast cancer. Front Cell Dev Biol. 9:728759. doi:10.3389/fcell.2021.728759.
  • Tang J, Yao C, Liu Y, Yuan, J., Wu, Li, Hosoi, K., Yu, S., Huang, C., Wei, H., Chen, G. 2021. Arsenic trioxide induces expression of BCL-2 expression via NF-κB and p38 MAPK signaling pathways in BEAS-2B cells during apoptosis. Ecotoxicol Environ Saf. 222:112531. doi:10.1016/j.ecoenv.2021.112531.
  • Wang R, Wang SY, Wang Y, Xin R, Xia B, Xin Y, Zhang T, Wu Y-H. 2020a. The Warburg effect promoted the activation of the NLRP3 inflammasome induced by Ni-refining fumes in BEAS-2B cells. Toxicol Ind Health. 36(8):580–590. doi:10.1177/0748233720937197.
  • Wang M, Zeng F, Ning F, Wang, Y., Zhou, S., He, J., Li, C., Wang, C., Sun, X., Zhang, D., Xiao, J., et al. 2022. Ceria nanoparticles ameliorate renal fibrosis by modulating the balance between oxidative phosphorylation and aerobic glycolysis. J Nanobiotechnology. 20(1):3. doi:10.1186/s12951-021-01122-w.
  • Wang Y, Zhao H, Guo M, Fei D, Zhang L, Xing M. 2020c. Targeting the miR-122/PKM2 autophagy axis relieves arsenic stress. J Hazard Mater. 383:121217. doi:10.1016/j.jhazmat.2019.121217.
  • Wang W, Zheng F, Lin C, Zhang A. 2020b. Changes in energy metabolism and macrophage polarization: potential mechanisms of arsenic-induced lung injury. Ecotoxicol Environ Saf. 204:110948. doi:10.1016/j.ecoenv.2020.110948.
  • Warburg O. 1956. On the origin of cancer cells. Science. 123(3191):309–314. doi:10.1126/science.123.3191.309.
  • Xiong X, Ke X, Wang L, Yao, Z., Guo, Yi, Zhang, X., Chen, Y., Pang, C P., Schally, A V., Zhang, H. 2020. Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target. Proc Natl Acad Sci U S A. 117(12):6726–6732. doi:10.1073/pnas.1913433117.
  • Xu Y, Yu C, Zeng Q, Yao M, Chen X, Zhang A. 2021. Assessing the potential value of rosa roxburghii tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage. Environ Geochem Health. 43(3):1165–1175. doi:10.1007/s10653-020-00612-4.
  • Yang R, Ying G, Li B. 2021. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming. Front Med. 15(5):679–692. doi:10.1007/s11684-021-0866-1.
  • Yao M, Zeng Q, Luo P, Sun, B., Liang, B., Wei, S., Xu, Y., Wang, Q., Liu, Q., Zhang, A. 2021. Assessing the risk of coal-burning arsenic-induced liver damage: a population-based study on hair arsenic and cumulative arsenic. Environ Sci Pollut Res Int. 28(36):50489–50499. doi:10.1007/s11356-021-14273-y.
  • Zeng X, Peng Y, Wang Y, Kang K. 2022. C1q/Tumor necrosis factor-related protein-3 (CTRP3) activated by forkhead box O4 (FOXO4) down-regulation protects retinal pericytes against high glucose-induced oxidative damage through nuclear factor erythroid 2-related factor 2 (Nrf2)/nuclear factor-kappaB (NF-κB) signaling. Bioengineered. 13(3):6080–6091. doi:10.1080/21655979.2022.2031413.
  • Zeng Q, Zou Z, Wang Q, Sun, B., Liu, Y., Liang, B., Liu, Q., Zhang, A. 2019. Association and risk of five miRnas with arsenic-induced multiorgan damage. Sci Total Environ. 680:1–9. doi:10.1016/j.scitotenv.2019.05.042.
  • Zhang B, Pan C, Feng C, Yan C, Yu Y, Chen Z, Guo C, Wang X. 2022. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 27(1):45–52. doi:10.1080/13510002.2022.2046423.
  • Zhao M, Ge X, Xu J, Li A,Mei Y. 2022. Association between urine metals and liver function biomarkers in Northeast China: a cross-sectional study. Ecotoxicol Environ Saf. 231:113163. doi:10.1016/j.ecoenv.2022.113163.
  • Zhao F, Severson P, Pacheco S, Futscher BW, Klimecki WT. 2013. Arsenic exposure induces the Warburg effect in cultured human cells. Toxicol Appl Pharmacol. 271(1):72–77. doi:10.1016/j.taap.2013.04.020.
  • Zhou Q, Xi S. 2018. A review on arsenic carcinogenesis: epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol. 99:78–88. doi:10.1016/j.yrtph.2018.09.010.
  • Zuzarte M, Francisco V, Neves B, Liberal J, Cavaleiro C, Canhoto J, Salgueiro L, Cruz MT. 2021. Lavandula viridis L´Hér. Essential oil inhibits the inflammatory response in macrophages through blockade of NF-KB signaling cascade. Front Pharmacol. 12:695911. doi:10.3389/fphar.2021.695911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.