44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carcinogenicity and non-carcinogenicity health risks due to PM2.5 bound trace metals at a sub urban site in Northwest Indo-Gangetic Plain

&
Received 20 Dec 2023, Accepted 04 May 2024, Published online: 17 May 2024

References

  • Alias NF, Firoz Khan M, Asrina Sairi N, Md Zain S, Suradi H, Ab Rahim H, Banerjee T, Aynul Bari M, Othman M, Talib Latif M. 2020. Characteristics, emission sources, and risk factors of heavy metals in PM2.5 from Southern Malaysia. ACS Earth Space Chem. 4(8):1309–1323. doi: 10.1021/acsearthspacechem.0c00103.
  • Aral H, Vecchio-Sadus A. 2008. Toxicity of lithium to humans and the environment-A literature review. Ecotox Environ Safe. 70(3):349–356. doi: 10.1016/j.ecoenv.2008.02.026.
  • Barbosa H, Soares AMVM, Pereira E, Freitas R. 2022. Lithium: A review on concentrations and impacts in marine and coastal systems. Sci Total Environ. 857:159374. doi: 10.1016/j.scitotenv.2022.159374.
  • Chandra S, Kulshrestha MJ, Singh R, Singh N. 2017. Chemical characteristics of trace metals in PM10 and their concentrated weighted trajectory analysis at Central Delhi, India. J Environ Sci (China). 55(May):184–196. doi: 10.1016/j.jes.2016.06.028.
  • Chandra BP, Sinha V. 2016. Contribution of post-harvest agricultural paddy residue fires in the N.W. Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon Monoxide. Environ Int. 88(March):187–197. doi: 10.1016/j.envint.2015.12.025.
  • Choi HB, Ryu JS, Shin WJ, Vigier N. 2019. The impact of anthropogenic inputs on lithium content in river and tap water. Nat Commun. 10(1). doi: 10.1038/s41467-019-13376-y.
  • Cigánková H, Mikuška P, Hegrová J, Pokorná P, Schwarz J, Krajčovič J. 2021. Seasonal variation and sources of elements in urban submicron and fine aerosol in Brno, Czech Republic. Aerosol Air Qual Res. 21(5). doi: 10.4209/aaqr.2020.09.0556.
  • Conibear L, Butt EW, Knote C, Arnold SR, Spracklen DV. 2018. Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India. Nat Commun. 9(1):617. doi: 10.1038/s41467-018-02986-7.
  • Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X. 2015. Trace element composition of PM2.5 and PM10 from Kolkata–a Heavily Polluted Indian Metropolis. Atmos Pollut Res. 6(5):742–750. doi: 10.5094/APR.2015.083.
  • David LM, Ravishankara AR, Kodros JK, Pierce JR, Venkataraman C, Sadavarte P. 2019. Premature mortality due to PM2. 5 over India: Effect of atmospheric transport and anthropogenic emissions. GeoHealth. 3(1):2–10.
  • Davis J, Desmond M, Berk M. 2018. Lithium and nephrotoxicity: a literature review of approaches to clinical management and risk stratification. BMC Nephrol. 19(1). doi: 10.1186/s12882-018-1101-4.
  • Elbehiry F, Elbasiouny H, Cappuyns V, Brevik EC. 2021. Available concentrations of some potentially toxic and emerging contaminants in different soil orders in Egypt and assessment of soil pollution. J Soils Sediments. 21(11):3645–3662. doi: 10.1007/s11368-021-03021-x.
  • Elhadi RE, Makmom Abdullah A, Halim Abdullah A, Hanan Ash’aari Z, Firoz Khan M. 2018. Seasonal variations of atmospheric particulate matter and its content of heavy metals in Klang Valley, Malaysia. Aerosol Air Qual Res. 18(5):1148–1161. doi: 10.4209/aaqr.2017.03.0113.
  • Ezhilkumar MR, Karthikeyan S, Chianese E, Tirimberio G, Di Gilio A, Palmisani J, Miniero VD, Cotugno P, Riccio A. 2021. Vertical transport of PM2. 5 and PM10 and its source identification in the street canyons of Chennai metropolitan city, India. Atmos Pollut Res. 12(1):173–183.
  • Ghude SD, Chate DM, Jena C, Beig G, Kumar R, Barth MC, Pfister GG, Fadnavis S, Pithani P. 2016. Premature mortality in India due to PM2. 5 and ozone exposure. Geophy Res Lett. 43(9):4650–4658.
  • Goodwin FMedSci GM, Geddes JR, Geddes JR, McKnight RF, Adida M, Budge K, Stockton S, Goodwin GM. 2012. Lithium toxicity profi le: a systematic review and meta-analysis. Lancet. 379(9817):721–728. doi: 10.1016/S0140.
  • Gummeneni S, Bin Yusup Y, Chavali M, Samadi SZ. 2011. Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos Res. 101(3):752–764.
  • Hakkim H, Sinha V, Chandra BP, Kumar A, Mishra AK, Sinha B, Sharma G, Pawar H, Sohpaul B, Ghude SD, et al. 2019. Volatile organic compound measurements point to fog-induced biomass burning feedback to air quality in the megacity of Delhi. Sci Total Environ. 689:295–304.
  • Haswani D, Sunder Raman R, Yadav K, Dhandapani A, Jawed Iqbal RNK, Laxmi Prasad SV, Yogesh A, Murthy S, Lokesh KS. 2023. Pollution characteristics and ecological risks of trace elements in PM2. 5 over three COALESCE network sites-Bhopal, Mesra, and Mysuru, India. Chemosphere. 324:138203.
  • Hu Z, Wang J, Chen Y, Chen Z, Xu S. 2014. Concentrations and source apportionment of particulate matter in different functional areas of Shanghai, China. Atmos Pollut Res. 5(1):138–144. doi: 10.5094/APR.2014.017.
  • Izhar S, Goel A, Chakraborty A, Gupta T. 2016. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere. 146(March):582–590. doi: 10.1016/j.chemosphere.2015.12.039.
  • Jain S, Kumar Sharma S, Srivastava MK, Chatterjee A, Narayanswami Vijayan S, Tripathy S, Maharaj Kumari K, Kumar Mandal T, Sharma C. 2021. Chemical characterization, source apportionment and transport pathways of PM2. 5 and PM10 over Indo Gangetic Plain of India. Urban Clim. 36:100805.
  • Jena S, Perwez A, Singh G. 2019. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environ Geochem Health. 41(6):2731–2747. doi: 10.1007/s10653-019-00329-z.
  • Jirau-Colón H, Toro-Heredia J, Layuno J, Dionisio Calderon E, Gioda A, Jiménez-Vélez BD. 2021. Distribution of toxic metals and relative toxicity of airborne PM 2.5 in Puerto Rico. Environ Sci Pollut Res. 28(13):16504–16516. doi: 10.1007/s11356-020-11673-4.
  • Khanna I, Khare M, Gargava P. 2015. Health risks associated with heavy metals in fine particulate matter: A case study in Delhi City, India. International Conference on Environmental Pollution and Public Health, EPPH 2015 p. 72–77. 10.4236/gep.2015.32012.
  • Khillare PS, Sarkar S. 2012. Airborne inhalable metals in residential areas of Delhi, India: Distribution, source apportionment and health risks. Atmos Pollut Res. 3(1):46–54. doi: 10.5094/APR.2012.004.
  • Kibirige D, Luzinda K, Ssekitoleko R. 2013. Spectrum of lithium induced thyroid abnormalities: A current perspective. Thyroid Res. 6(1):3. doi: 10.1186/1756-6614-6-3.
  • Kidwell CB, Ondov JM. 2004. Elemental analysis of sub-hourly ambient aerosol collections. Aerosol Sci Technol. 38(3):205–218. doi: 10.1080/02786820490261726.
  • Krishna Moorthy K, Suresh Babu S, Manoj MR, Satheesh SK. 2013. Buildup of aerosols over the Indian Region. Geophys Res Lett. 40(5):1011–1014. doi: 10.1002/grl.50165.
  • Kszos LA, Beauchamp JJ, Stewart AJ. 2003. Toxicity of Lithium to three freshwater organisms and the antagonistic effect of sodium. Ecotoxicology. 12(5):427–437. doi: 10.1023/A:1026160323594.
  • Kumar A, Hakkim H, Ghude SD, Sinha V. 2021. Probing wintertime air pollution sources in the Indo-Gangetic Plain through 52 hydrocarbons measured rarely at Delhi & Mohali. Sci Total Environ. 801:149711.
  • Kumar V, Sarkar C, Sinha V. 2016. Influence of post‐harvest crop residue fires on surface ozone mixing ratios in the NW IGP analyzed using 2 years of continuous in situ trace gas measurements. J Geophys Res: Atmosph. 121(7):3619–3633.
  • Leal MFC, Catarino RIL, Pimenta AM, Souto MRS. 2020. Roles of metal microelements in neurodegenerative diseases. Neurophysiology. 52(1):80–88. doi: 10.1007/s11062-020-09854-5.
  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 525(7569):367–371. doi: 10.1038/nature15371.
  • Li Y, Zhao B, Duan K, Cai J, Niu W, Dong X. 2021. Contamination characteristics, mass concentration, and source analysis of metal elements in PM2.5 in Lanzhou, China. Elem Sci Anth. 9(1). doi: 10.1525/elementa.2020.00125.
  • Martins A, da Silva DD, Silva R, Carvalho F, Guilhermino L. 2022. Long-term effects of lithium and lithium-microplastic mixtures on the model species Daphnia magna: Toxicological interactions and implications to ‘One Health’. Sci Total Environ. 838:155934. doi: 10.1016/j.scitotenv.2022.155934.
  • Mondal S, Singh G. 2021. PM2.5-bound trace elements in a critically polluted industrial coal belt of India: seasonal patterns, source identification, and human health risk assessment. Environ Sci Pollut Res. 28(25):32634–32647. doi: 10.1007/s11356-021-12876-z.
  • Motesaddi Zarandi S, Shahsavani A, Khodagholi F, Fakhri Y. 2019. Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM 2.5 ambient air, Tehran, Iran. Environ Geochem Health. 41(3):1473–1487. doi: 10.1007/s10653-018-0229-2.
  • Nirmalkar J, Haswani D, Singh A, Kumar S, Sunder Raman R. 2021. Concentrations, transport characteristics, and health risks of PM2.5-bound trace elements over a national park in central India. J Environ Manage. 293:112904. doi: 10.1016/j.jenvman.2021.112904.
  • Ojha N, Sharma A, Kumar M, Girach I, Ansari TU, Sharma SK, Singh N, Pozzer A, Gunthe SS. 2020. On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci Rep. 10(1):5862. doi: 10.1038/s41598-020-62710-8.
  • Pandey P, Patel DK, Khan AH, Barman SC, Murthy RC, Kisku GC. 2013. Temporal distribution of fine particulates (PM2. 5, PM10), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India. Journal of Environmental Science and Health, Part a. 48(7):730–745.
  • Patnana DP, Chandra BP, Chaudhary P, Sinha B, Sinha V. 2022. Optimized LC-MS/MS method for simultaneous determination of endocrine disruptors and PAHs Bound to PM2.5: Sources and health risk in Indo-Gangetic Plain. Atmos Environ. 290(December):119363. doi: 10.1016/j.atmosenv.2022.119363.
  • Pauraite J, Plauškaitė K, Dudoitis V, Ulevicius V. 2018. Relationship between the optical properties and chemical composition of urban aerosol particles in Lithuania. Adv Meteorol. 2018:1–10. doi: 10.1155/2018/8674173.
  • Pawar H, Garg S, Kumar V, Himanshu Sachan RA, Sarkar C, Chandra BP, Sinha B. 2015. Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP. Atmos Chem Phys. 15(16):9501–9520.
  • Police S, Kumar Sahu S, Tiwari M, Girish Pandit G. 2018. Chemical composition and source apportionment of PM2. 5 and PM2. 5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology. 37:143–153.
  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M. 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA. 102(15):5326–5333. doi: 10.1073/pnas.0500656102.
  • Sah D. 2022. Characterization, seasonal variations, source apportionment and health risk assessment of heavy metals in PM 2.5 in the urban site of Agra, India. 10.21203/rs.3.rs-1765734/v1.
  • Sah D, Verma PK, Kandikonda MK, Lakhani A. 2019. Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain. Environ Sci Pollut Res. 26(19):19749–19762. doi: 10.1007/s11356-019-05144-8.
  • Sakunkoo P, Thonglua T, Sangkham S, Jirapornkul C, Limmongkon Y, Daduang S, Tessiri T, Rayubkul J, Thongtip S, Maneenin N, et al. 2022. Human health risk assessment of PM2.5-bound heavy metal of anthropogenic sources in the Khon Kaen Province of Northeast Thailand. Heliyon. 8(6):e09572. doi: 10.1016/j.heliyon.2022.e09572.
  • Senthil AR, Rajkumar P. 2013. Characterization of minerals in air dust particles in the state of Tamilnadu, India through ftir spectroscopy. Atmos Chem Phys. 13:22221–22248. https://api.semanticscholar.org/CorpusID:55244953.
  • Shaltout AA, Harfoushe M, Ali SSM, Karydas AG, Kregsamer P, Wobrauschek P, Streli C, Abd-Elkader OH, Yassin MA, El Orabi NF. 2020. Aug. Elemental composition and source apportionment of atmospheric aerosols collected from urban and residential areas of jordan using multi-secondary targets energy dispersive X-Ray fluorescence. Spectrochim Acta - Part B Atomic Spectrosc. 170:105900. doi: 10.1016/j.sab.2020.105900.
  • Sharma M, Maloo S. 2005. Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos Environ. 39(33):6015–6026. doi: 10.1016/j.atmosenv.2005.04.041.
  • Shen J, Li X, Shi X, Wang W, Zhou H, Wu J, Wang X, Li J. 2020. The toxicity of lithium to human cardiomyocytes. Environ Sci Eur. 32(1):1–12. doi: 10.1186/s12302-020-00333-6.
  • Shikha,Rajouriya K, Singh Pipal AS, Taneja, A. 2023. Chemical characterization and health risk assessment of particulate matter near national highway at urban and semi-urban location of Northern India. Aerosol Science and Engineering. 7(4):517–533.
  • Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H. 2019. A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotox Environ Safe. 174(June):344–352. doi: 10.1016/j.ecoenv.2019.02.086.
  • Singh DK, Gupta T. 2016. Source apportionment and risk assessment of PM1 Bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic Plain. Sci Total Environ. 550(April):80–94. doi: 10.1016/j.scitotenv.2016.01.037.
  • Sinha V, Awasthi A, Mishra S, Singh R, Singh G, Yadav RK, Varkrishna M. 2023. Extreme summertime ozone pollution over the North-west Indo-gangetic plain driven by amplified peroxy-radical chemistry due to precursor emissions. SSRN Electron J. 10.2139/ssrn.4527125.
  • Sinha V, Kumar V, Sarkar C. 2014. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning. Atmos Chem Phys. 14(12):5921–5941. doi: 10.5194/acp-14-5921-2014.
  • Soleimani M, Amini N, Sadeghian B, Wang D, Fang L. 2018. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran. J Environ Sci (China). 72(October):166–175. doi: 10.1016/j.jes.2018.01.002.
  • Tkatcheva V, Poirier D, Chong-Kit R, Furdui VI, Burr C, Leger R, Parmar J, Switzer T, Maedler S, Reiner EJ, et al. 2015. Lithium an emerging contaminant: Bioavailability, effects on protein expression, and homeostasis disruption in short-term exposure of rainbow trout. Aquat Toxicol. 161:85–93. doi: 10.1016/j.aquatox.2015.01.030.
  • Tripathi SN, Dey S, Tare V, Satheesh SK. 2005. Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett. 32(8). doi: 10.1029/2005gl022515.
  • Wedepohl KH. 1995. The composition of the continental crust*. Geochim Cosmochim Acta. 59(7):1217–1232. doi: 10.1016/0016-7037(95)00038-2.
  • Wu T, Liu P, He X, Xu H, Shen Z. 2021. Bioavailability of heavy metals bounded to PM 2.5 in Xi’an, China: Seasonal variation and health risk assessment. Environ Sci Pollut Res. 28(27):35844–35853. doi: 10.1007/s11356-021-13198-w.
  • Xu J, Jia C, Yu H, Xu H, Ji D, Wang C, Xiao H, He J. 2021. June. Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere. 272:129632. doi: 10.1016/j.chemosphere.2021.129632.
  • Yadav S, Gursumeeran Satsangi P. 2013. Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ Monit Assess. 185:7365–7379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.