44
Views
0
CrossRef citations to date
0
Altmetric
Review article

Forecasting tuberculosis incidence: a review of time series and machine learning models for prediction and eradication strategies

ORCID Icon & ORCID Icon
Received 24 Feb 2024, Accepted 05 Jun 2024, Published online: 25 Jun 2024

References

  • Ali MH, Khan DM, Jamal K, Ahmad Z, Manzoor S, Khan Z. 2021. Prediction of multidrug-resistant tuberculosis using machine learning algorithms in SWAT, Pakistan. J Healthc Eng. 20:1–11. doi: 10.1155/2021/2567080.
  • Aryee G. 2018. Estimating the incidence of tuberculosis cases reported at a tertiary hospital in Ghana: a time series model approach 11 medical and health sciences 1117 public health and health services. BMC Public Health. 18(1). doi: 10.1186/s12889-018-6221-z.
  • Asad M, Mahmood A, Usman M. 2020. A machine learning-based framework for predicting treatment failure in tuberculosis: a case study of six countries. Tuberc (Edinb). 123:101944. doi: 10.1016/j.tube.2020.101944.
  • Azeez A, Obaromi D, Odeyemi A, Ndege J, Muntabayi R. 2016. Seasonality and trend forecasting of tuberculosis prevalence data in eastern cape, South Africa, using a hybrid model. Int J Environ Res And Public Health. 13(8):757. doi: 10.3390/ijerph13080757.
  • Bonaccorso G. 2017. Machine learning algorithms. Packt Publishing Ltd. https://balasahebtarle.files.wordpress.com/2020/01/machine-learning-algorithms_text-book.pdf.
  • Cao S. 2013. A hybrid seasonal prediction model for tuberculosis incidence in China. http://www.biomedcentral.com/1472-6947/13/56.
  • Chen J, Ho E, Jiang Y, Whittaker R, Yang T, Bullen C. 2020. Mobile social network–based smoking cessation intervention for Chinese male smokers: pilot randomized controlled trial. JMIR Mhealth Uhealth. 8(10):10. doi: 10.2196/17522.
  • de Andrade HLP. 2021. Tuberculosis forecasting and temporal trends by sex and age in a high endemic city in northeastern Brazil: where were we before the Covid-19 pandemic. BMC Infect Dis. 21(1). doi: 10.1186/s12879-021-06978-9.
  • Dheda K. 2022. The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir Med. 10(6):603–622. doi: 10.1016/S2213-2600(22)00092-3.
  • Dong S, Shen X, Xia Z, Li X, Pan Q, Zhao Q. 2019. Changes in the epidemic of pulmonary tuberculosis in Shanghai from 1992 to 2016. Trop Med Int Health. 24(2):220–228. doi: 10.1111/tmi.13187.
  • Frauenfeld L, Nann D, Sulyok Z, Feng YS, Sulyok M. 2020. Forecasting tuberculosis using diabetes-related google trends data. Pathog Glob Health. 114(5):236–241. doi: 10.1080/20477724.2020.1767854.
  • Guo X, Shen H, Liu S, Xie N, Yang Y, Jin J. 2021. Predicting the trend of infectious diseases using grey self-memory system model: a case study of the incidence of tuberculosis. Public Health. 201:108–114. doi: 10.1016/j.puhe.2021.09.025.
  • Heireman L, Bruynseels P, Camps K, Geysels D, Huyghe E, André E, Van Gasse N. 2022. Comparison of the QuantiFERON-TB® gold plus on LIAISON® XL and T-SPOT.TB for the diagnosis of latent mycobacterium tuberculosis infection in a low tuberculosis incidence population. Diagn Microbiol Infect Dis. 102(3):3. doi: 10.1016/j.diagmicrobio.2021.115613.
  • Li J. 2021. Forecasting the tuberculosis incidence using a novel ensemble empirical mode decomposition-based data-driven hybrid model in Tibet, China. Infect Drug Resist. 14:1941–1955. doi: 10.2147/IDR.S299704.
  • Li Z. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population,” Infect Drug Resist, 2019; Volume 12, pp. 1011–1020. 10.2147/IDR.S190418.
  • Liang X, Xu Q, Guan R, Zhao Y. 2020. Forecasting tuberculosis incidence in China using Baidu index: a comparative study. ACM International Conference Proceeding Series p. 22–29. 10.1145/3418094.3418129.
  • Liao Z, Zhang X, Zhang Y, Peng D. 2019. Seasonality and trend forecasting of tuberculosis incidence in Chongqing, China. Interdiscip Sci. 11(1):77–85. doi: 10.1007/s12539-019-00318-x.
  • Li C, Nie S, Cao Y, Yu Y, Hu Z. 2020. Trace-based dynamic gas estimation of loops in smart contracts. IEEE Open J Comput Soc. 1:295–306. doi: 10.1109/OJCS.2020.3039991.
  • Li ZQ, Pan HQ, Liu Q, Song H, Wang JM. 2020. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China. Infect Dis Poverty. 9(1). doi: 10.1186/s40249-020-00771-7.
  • Liu Q. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses,” Infect Drug Resist, 2019; Volume 12, pp. 2311–2322. 10.2147/IDR.S207809.
  • Mao Q, Zhang K, Yan W, Cheng C. 2018. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. J Infect Public Health. 11(5):707–712. doi: 10.1016/j.jiph.2018.04.009.
  • Mohammed SH, Ahmed MM, Al-Mousawi AM, Azeez A. 2018. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Int J Mycobacteriol. 7(4):361–367. doi: 10.4103/ijmy.ijmy_109_18.
  • Moosazadeh M, Khanjani N, Nasehi M, Bahrampour A. 2015. Predicting the incidence of smear positive tuberculosis cases in Iran using time series analysis. http://ijph.tums.ac.ir/.
  • Moosazadeh M, Nasehi M, Bahrampour A, Khanjani N, Sharaf S, Ahmadi S. 2014. Forecasting tuberculosis incidence in Iran using box-Jenkins models. Iran Red Crescent Med J. 16(5). doi: 10.5812/ircmj.11779.
  • Orjuela-Cañón AD, Jutinico AL, González MED, García CEA, Vergara E, Palencia MA. 2022. Time series forecasting for tuberculosis incidence employing neural network models. Heliyon. 8(7):e09897. doi: 10.1016/j.heliyon.2022.e09897.
  • Page MJ. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:n71. doi: 10.1136/bmj.n71.
  • Pai M, Kasaeva T, Swaminathan S. 2022. Covid-19’s devastating effect on tuberculosis care — a path to recovery. N Engl J Med. 386(16):1490–1493. doi: 10.1056/NEJMp2118145.
  • Pereira FH. 2018. Nonlinear autoregressive neural network models for prediction of transformer oil-dissolved gas concentrations. Energies (Basel). 11(7):1691. doi: 10.3390/en11071691.
  • Petersen E. 2022. World TB day 2022: revamping and reshaping global tb control programs by advancing lessons learned from the COVID-19 pandemic. Int J Infect Dis. 124:S1–S3. doi: 10.1016/j.ijid.2022.02.057.
  • Starshinova A, Belyaeva E, Doktorova N, Korotkevich I, Kudlay D. 2023. Tuberculosis in the Russian federation: prognosis and epidemiological models in a situation after the COVID-19 pandemic. J Epidemiol Glob Health. 13(1):1–12. doi: 10.1007/s44197-023-00085-5.
  • Wang Y. 2019. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. BMJ Open. 9(7):e024409. doi: 10.1136/bmjopen-2018-024409.
  • Wang Y. An advanced data-driven hybrid model of SARIMA-NNNAR for tuberculosis incidence time series forecasting in Qinghai province, China,” Infect Drug Resist, 2020a; Volume 13, pp. 867–880. 10.2147/IDR.S232854.
  • Wang Y. Secular seasonality and trend forecasting of tuberculosis incidence rate in China using the advanced error-trend-seasonal framework,” Infect Drug Resist, 2020b; Volume 13, pp. 733–747. 10.2147/IDR.S238225.
  • Wang Y, Chunjie X, Ren J, Weidong W, Zhao X, Chao L, Liang W, Yao S 2020. Secular seasonality and trend forecasting of tuberculosis incidence rate in China using the advanced error-trend-seasonal framework. Infect Drug Resist. 13:733–747. doi: 10.2147/IDR.S238225.
  • Wang KW, Deng C, Li JP, Zhang YY, Li XY, Wu MC. 2017. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol Infect. 145(6):1118–1129. doi: 10.1017/S0950268816003216.
  • Wang H, Tian CW, Wang WM, Luo XM. 2018. Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect. 146(8):935–939. doi: 10.1017/S0950268818001115.
  • Wang Y, Xu C, Yao S, Zhao Y. 2020. Forecasting the epidemiological trends of COVID-19 prevalence and mortality using the advanced α-Sutte Indicator. Epidemiol Infect. 148. doi: 10.1017/S095026882000237X.
  • Wei W. 2017. A new hybrid model using an autoregressive integrated moving average and a generalized regression neural network for the incidence of tuberculosis in Heng County, China. Am J Trop Med Hyg. 97(3):799–805. doi: 10.4269/ajtmh.16-0648.
  • Wei W, Xia L, Wu J, Zhou Z, Zhang W, Luan R. 2023. The environmental and socioeconomic effects and prediction of patients with tuberculosis in different age groups in Southwest China: a population-based study. JMIR Public Health Surveill. 9:e40659. doi: 10.2196/40659.
  • WHO. 2015. Digital health for the end tb strategy: an agenda for action. Who; https://apps.who.int/iris/handle/10665/205222.
  • WHO. 2019. WHO report on the global tobacco epidemic, 2019: offer help to quit tobacco use: executive summary. World Health Organization.
  • WHO. 2021. Global tuberculosis report 2021. https://reliefweb.int/report/world/global-tuberculosis-report-2021.
  • Wu Z, Chen Z, Long S, Wu A, Wang H. 2022. Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China. BMC Infect Dis. 22(1):1–10. doi: 10.1186/s12879-022-07620-y.
  • Zhang G. 2013. Application of a hybrid model for predicting the incidence of tuberculosis in Hubei, China. PLoS One. 8(11):e80969. doi: 10.1371/journal.pone.0080969.
  • Zheng Y, Zhang L, Wang L, Rifhat R. 2020. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. BMC Infect Dis. 20(1). doi: 10.1186/s12879-020-05033-3.
  • Zheng Y, Zhang X, Wang X, Wang K, Cui Y. 2021. Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China. BMJ Open. 11(1):e041040. doi: 10.1136/bmjopen-2020-041040.
  • Zimmer AJ. 2022. Tuberculosis in times of COVID-19. J Epidemiol Community Health. 76(3):310–316. doi: 10.1136/jech-2021-217529.
  • Zuo Z. 2020. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system. BMC Public Health. 20(1). doi: 10.1186/s12889-020-09331-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.