42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the synergistic effects of apple vinegar and deep eutectic solvent as natural antibiotics: an experimental and COSMO-RS analysis

, , , , , , & show all
Received 23 Mar 2024, Accepted 17 Jun 2024, Published online: 05 Jul 2024

References

  • Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V. 2001. Novel ambient temperature ionic liquids for zinc and zinc alloy electrodeposition. Trans IMF. 79(6):204–206. doi: 10.1080/00202967.2001.11871395.
  • Abu Hatab, F., Ibrahim, O.A.Z., Warrag, S.E.E., Darwish, A.S., Lemaoui, T., Alam, M.M., Alsufyani, T., Jevtovic, V., Jeon, B.-H., Banat, F. 2022. Solvent regeneration methods for combined dearomatization, desulfurization, and denitrogenation of fuels using deep eutectic solvents. ACS Omega. 8(1):626–635. doi: 10.1021/acsomega.2c05776.
  • Ahmadifar, E., Dawood, M.A.O., Moghadam, M.S., Sheikhzadeh, N., Hoseinifar, S.H., Musthafa, M.S. 2019. Modulation of immune parameters and antioxidant defense in zebrafish (Danio rerio) using dietary apple cider vinegar. Aquaculture. 513:513, 734412. doi: 10.1016/j.aquaculture.2019.734412.
  • Al‐Akayleh F, Khalid RM, Hawash D, Al‐Kaissi E, Al‐Adham ISI, Al‐Muhtaseb N, Jaber N, Al‐Remawi M, Collier PJ. 2022. Antimicrobial potential of natural deep eutectic solvents. Lett Appl Microbiol. 75(3):607–615. doi: 10.1111/lam.13699.
  • Alioui O, Sobhi W, Tiecco M, Alnashef IM, Attoui A, Boudechicha A, Kumar Yadav K, Fallatah AM, Elboughdiri N, Jeon B-H, Benguerba Y. 2022. Theoretical and experimental evidence for the use of natural deep eutectic solvents to increase the solubility and extractability of curcumin. J Mol Liq. 359:119149. doi: 10.1016/j.molliq.2022.119149.
  • Alkhatib, I.I.I., Alba, C.G., Darwish, A.S., Vega, L.F. 2022. Searching for sustainable refrigerants by bridging molecular modeling with machine learning. Ind Eng Chem Res. 61(21):7414–7429. doi: 10.1021/acs.iecr.2c00719.
  • Almustafa, G., Darwish, A.S., Lemaoui, T., O’Conner, M.J., Amin, S., Arafat, H.A., AlNashef, I. 2021. Liquification of 2, 2, 4-trimethyl-1, 3-pentanediol into hydrophobic eutectic mixtures: A multi-criteria design for eco-efficient boron recovery. Chem Eng J. 426:131342. doi: 10.1016/j.cej.2021.131342.
  • Alonso, D.A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I.M., Ramón, D.J. 2016. Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem. 2016(4):612–632. doi: 10.1002/ejoc.201501197.
  • Bakli, S., Daoud, H., Amina, Z., Nouari, S., Asma, B., Soufiane, G., Oumaima, N. 2020. Antimicrobial and antioxidant activities of flavonoids extracted from Pistacia lentiscus L. Leaves. J Drug Delivery Ther. 10(1–s):83–89. doi: 10.22270/jddt.v10i1-s.3895.
  • Benabid, S., Haddaoui, N., Lemaoui, T., Darwish, A.S., Benguerba, Y., Alnashef, I.M. 2021. Computational modeling of polydecanediol-co-citrate using benzalkonium chloride-based hydrophobic eutectic solvents: COSMO-RS, reactivity, and compatibility insights. J. Molecular Liquids. 339:116674. doi: 10.1016/j.molliq.2021.116674.
  • Benmalek, Y., Yahia, O.A., Belkebir, A., Fardeau, M.-L. 2013. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. Bioengineered. 4(4):244–248. doi: 10.4161/bioe.24435.
  • Berghe, V.A., Vlietinck, A.J. 1991. Screening methods for antibacterial and antiviral agents from higher plants. Methods Plant Biochem. 6:47–68.
  • Boublia, A., Lebouachera, S.E.I., Haddaoui, N., Guezzout, Z., Ghriga, M.A., Hasanzadeh, M., Benguerba, Y., Drouiche, N. 2022. State-of-the-art review on recent advances in polymer engineering: modeling and optimization through response surface methodology approach. Polym Bull. 80(6):5999–6031. doi: 10.1007/s00289-022-04398-6.
  • Boublia, A., Lemaoui, T., Abu Hatab, F., Darwish, A.S., Banat, F., Benguerba, Y., AlNashef, I.M. 2022. Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents. J Mol Liq. 366(366):120225. doi: 10.1016/j.molliq.2022.120225.
  • Boublia, A., Lemaoui, T., Almustafa, G., Darwish, A.S., Benguerba, Y., Banat, F., AlNashef, I.M. 2023. Critical properties of ternary deep eutectic solvents using group contribution with extended Lee–Kesler Mixing rules. ACS Omega. 8(14):13177–13191. doi: 10.1021/acsomega.3c00436.
  • Boublia, A., Lemaoui, T., AlYammahi, J., Darwish, A.S., Ahmad, A., Alam, M., Banat, F., Benguerba, Y., AlNashef, I.M. 2022. Multitask neural network for mapping the glass transition and melting temperature space of homo- and Co-Polyhydroxyalkanoates using σ profiles molecular inputs. ACS Sustainable Chem Eng. 11(1):208–227. doi: 10.1021/acssuschemeng.2c05225.
  • Bouharb, H., El Badaoui, K., Amechrouq, A., El Amri, J. 2014. Phytochemical and antibacterial studies on the aqueous extract of Eucalyptus gomphocephala DC. J Res Biol. 4:1549–1556.
  • Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A.S., Lemaoui, T., Verma, R., Benguerba, Y. 2023. Schiff Bases and their metal complexes: A review on the history, synthesis, and applications. Inorg Chem Commun. 150:110451. doi: 10.1016/j.inoche.2023.110451.
  • Chen M, Lahaye M. 2021. Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll. 115:106601. doi: 10.1016/j.foodhyd.2021.106601.
  • Cockerill, F.R., Wikler, M.A., Alder, J., Dudley, M.N., Eliopoulos, G.M., Ferraro, M.J., Hardy, D.J., Hecht, D.W., Hindler, J.A., Patel, J.B. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approv Stand 26(2).
  • Darwish, A.S., Lemaoui, T., AlYammahi, J., Taher, H., Benguerba, Y., Banat, F., AlNashef, I.M. 2023. Molecular Insights into potential hydrophobic deep eutectic solvents for furfural extraction guided by COSMO-RS and machine learning. J Mol Liq 379(1): 121631.
  • Degryse, A.-C., Delpla, I., Marie-Alix, V. Risques et bénéfices possibles des Huiles Essentielles. Rapp. stage en vue l’obtention du diplôme d’ingénieur du génie Sanit. 2008:1–87.
  • Del Monte, F., Carriazo, D., Serrano, M.C., Gutiérrez, M.C., Ferrer, M.L. 2014. Deep eutectic solvents in polymerizations: A greener alternative to conventional syntheses. ChemSuschem. 7(4):999–1009. doi: 10.1002/cssc.201300864.
  • Deniz, S., Ünlü, A.E., Takaç, S. 2023. Ultrasound-assisted natural deep eutectic solvent extraction of phenolic compounds from apple pomace. Sep. Separation Sci Technol. 58(2):302–313. doi: 10.1080/01496395.2022.2112603.
  • Depoorter, J. 2021. Utilisation de solvants eutectiques profonds et de dérivés liquides ioniques pour la conception de nouveaux matériaux. Lyon (France): Université de Lyon.
  • Dorman H, Deans SG. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 88(2):308–316. doi: 10.1046/j.1365-2672.2000.00969.x.
  • Eloff JN. 1998. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 64(8):711–713. doi: 10.1055/s-2006-957563.
  • Gabsi, M., Ferkous, H., Delimi, A., Boublia, A., Boulechfar, C., Kahlouche, A., Darwish, A.S., Lemaoui, T., Benguerba, Y. 2023. The curious case of polyphenols as green corrosion inhibitors: a review on their extraction, design, and applications. Environ Sci Pollut Res. 30(21):59081–59105. doi: 10.1007/s11356-023-26753-4.
  • Gigante, V., Sati, H., Beyer, P. 2022. Recent advances and challenges in antibacterial drug development. Admet Dmpk. 10(2):147–151. doi: 10.5599/admet.1271.
  • Gopal, J., Anthonydhason, V., Muthu, M., Gansukh, E., Jung, S., Chul, S., Iyyakkannu, S. 2019. Authenticating apple cider vinegar’s home remedy claims: antibacterial, antifungal, antiviral properties and cytotoxicity aspect. Nat Prod Res. 33(6):906–910. doi: 10.1080/14786419.2017.1413567.
  • Hikmawanti, N.P.E., Ramadon, D., Jantan, I., Mun’im, A. 2021. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants. 10(10):2091. doi: 10.3390/plants10102091.
  • Jukic M, Bren U. 2022. Machine learning in antibacterial drug design. Front Pharmacol. 13:1284. doi: 10.3389/fphar.2022.864412.
  • Jurić T, Mićić N, Potkonjak A, Milanov D, Dodić J, Trivunović Z, Popović BM. 2021. The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents. Food Chem. 362:130226. doi: 10.1016/j.foodchem.2021.130226.
  • Kahraman, H.A., Tutun, H., Keyvan, E., Balkan, B.M. 2022. Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar. Ankara Univ Vet Fak Derg. 69:139–148. doi: 10.33988/auvfd.865309.
  • Kahraman, H.A., Tutun, H., Keyvan, E., Balkan, B.M. 2022. Ev Yapımı Elma ve Üzüm Sirkelerinin Kimyasal, Antibakteriyel ve Antiradikal Özelliklerinin Araştırılması. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 69(2):139–148. doi: 10.33988/auvfd.865309.
  • Kara M, Assouguem A, Fadili ME, Benmessaoud S, Alshawwa SZ, Kamaly OA, Saghrouchni H, Zerhouni AR, Bahhou J. 2022. Contribution to the evaluation of physicochemical properties, total phenolic content, antioxidant potential, and antimicrobial activity of vinegar commercialized in Morocco. Molecules. 27(3):770. doi: 10.3390/molecules27030770.
  • Kara M, Assouguem A, Kamaly OMA, Benmessaoud S, Imtara H, Mechchate H, Hano C, Zerhouni AR, Bahhou J. 2021. The impact of apple variety and the production methods on the antibacterial activity of vinegar samples. Molecules. 26(18):5437. doi: 10.3390/molecules26185437.
  • Kelebek H, Kadiroğlu P, Demircan NB, Selli S. 2017. Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J Inst Brew. 123(3):407–416. doi: 10.1002/jib.432.
  • Lemaoui T, Abu Hatab F, Darwish AS, Attoui A, Hammoudi NEH, Almustafa G, Benaicha M, Benguerba Y, Alnashef IM. 2021. Molecular-based guide to predict the ph of eutectic solvents: Promoting an efficient design approach for new green solvents. ACS Sustainable Chem Eng. 9(17):5783–5808. doi: 10.1021/acssuschemeng.0c07367.
  • Lemaoui, T., Boublia, A., Darwish, A.S., Alam, M., Park, S., Jeon, B.-H., Banat, F., Benguerba, Y., AlNashef, I.M. 2022. Predicting the surface tension of deep eutectic solvents using artificial neural networks. ACS Omega. 7(36):32194–32207. doi: 10.1021/acsomega.2c03458.
  • Lemaoui, T., Darwish, A.S., Almustafa, G., Boublia, A., Sarika, P.R., Jabbar, N.A., Ibrahim, T., Nancarrow, P., Yadav, K.K., Fallatah, A.M., Abbas, M., Algethami, J.S., Benguerba, Y., Jeon, B.H., Banat, F., AlNashef, I.M. 2023. Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications. Energy Storage Materials. 59:102795. doi: 10.1016/j.ensm.2023.102795.
  • Lemaoui, T., Darwish, A.S., Attoui, A., Abu Hatab, F., Hammoudi, N.E.H., Benguerba, Y., Vega, L.F., Alnashef, I.M. 2020. Predicting the density and viscosity of hydrophobic eutectic solvents: Towards the development of sustainable solvents. Green Chem. 22(22):8511–8530. doi: 10.1039/d0gc03077e.
  • Lemaoui, T., Darwish, A.S., Hammoudi, N.E.H., Abu Hatab, F., Attoui, A., Alnashef, I.M., Benguerba, Y. 2020. Prediction of Electrical conductivity of deep eutectic solvents using COSMO-RS sigma profiles as molecular descriptors: a quantitative structure–property relationship study. Ind Eng Chem Res. 59(29):13343–13354. doi: 10.1021/acs.iecr.0c02542.
  • Lemaoui, T., Hammoudi, N.E.H., Alnashef, I.M., Balsamo, M., Erto, A., Ernst, B., Benguerba, Y. 2020. Quantitative structure properties relationship for deep eutectic solvents using Sσ-profile as molecular descriptors. J Mol Liq. 309. doi: 10.1016/j.molliq.2020.113165.
  • Liu Y, Friesen JB, McAlpine JB, Lankin DC, Chen SN, Pauli GF. 2018. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J Nat Prod. 81(3):679–690. doi: 10.1021/acs.jnatprod.7b00945.
  • Londzin, P., Siudak, S., Cegieła, U., Pytlik, M., Janas, A., Waligóra, A., Folwarczna, J. 2018. Phloridzin, an apple polyphenol, exerted unfavorable effects on bone and muscle in an experimental model of type 2 diabetes in rats. Nutrients. 10(11):1701. doi: 10.3390/nu10111701.
  • Man, M.S., Abdullah, M.A.M., Abdullah, S.B., Yaacob, Z. 2017. Screening cation and anion of ionic liquid for dissolution of silicon dioxide using COSMO-RS. Indian J Sci Technol. 10:1–6. doi: 10.17485/ijst/2017/v10i6/111218.
  • Martini, N., Eloff, J.N. 1998. The preliminary isolation of several antibacterial compounds from Combretum erythrophyllum (Combretaceae). J. Ethno. 62(3):255–263. doi: 10.1016/S0378-8741(98)00067-1.
  • Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY. 2017. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol Adv. 35(2):105–134. doi: 10.1016/j.biotechadv.2016.11.006.
  • Mouffok A, Bellouche D, Debbous I, Anane A, Khoualdia Y, Boublia A, Darwish AS, Lemaoui T, Benguerba Y. 2023. Synergy of garlic extract and deep eutectic solvents as promising natural Antibiotics: Experimental and COSMO-RS. J Mol Liq. 375:121321. doi: 10.1016/j.molliq.2023.121321.
  • Moumeni, O., Mehri, M., Kerkour, R., Boublia, A., Mihoub, F., Chafai, N., Benguerba, Y. 2023. Journal of the Taiwan Institute of Chemical Engineers Experimental and detailed DFT/MD simulation of α -aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment. J Taiwan Inst Chem Eng. 147:104918. doi: 10.1016/j.jtice.2023.104918.
  • Ousaaid D, Laaroussi H, Bakour M, Elghouizi A, Aboulghazi A, Lyoussi B, Elarabi I. 2020. Beneficial effects of apple vinegar on hyperglycemia and hyperlipidemia in hypercaloric-fed rats. J Diabetes Res. 2020:1–7. doi: 10.1155/2020/9284987.
  • Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC. 2014. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chem Eng. 2(5):1063–1071. doi: 10.1021/sc500096j.
  • Pavić, V., Flačer, D., Jakovljević, M., Molnar, M., Jokić, S. 2019. Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of Ruta graveolens L. extracts obtained by choline chloride-based natural deep eutectic solvents. Plants. 8(3):69. doi: 10.3390/plants8030069.
  • Pedro SN, Gomes ATPC, Oskoei P, Oliveira H, Almeida A, Freire MG, Silvestre AJD, Freire CSR. 2022. Boosting antibiotics performance by new formulations with deep eutectic solvents. Int J Pharm. 616:121566. doi: 10.1016/j.ijpharm.2022.121566.
  • Ponce, A.G., Fritz, R., Del Valle, C., Roura, S.I. 2003. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT - Food Sci Technol. 36(7):679–684. doi: 10.1016/S0023-6438(03)00088-4.
  • Popović BM, Uka D, Alioui O, Ždero Pavlović R, Benguerba Y. 2022. Experimental and COSMO-RS theoretical exploration of rutin formulations in natural deep eutectic solvents: Solubility, stability, antioxidant activity, and bioaccessibility. J Mol Liq. 359:359. doi: 10.1016/j.molliq.2022.119266.
  • Prestinaci, F., Pezzotti, P., Pantosti, A. 2015. Antimicrobial resistance: a global, multifaceted phenomenon. Pathogens And Global Health. 109(7):309–318. doi: 10.1179/2047773215Y.0000000030.
  • Qader IB, Prasad K. 2022. Recent developments on ionic liquids and deep eutectic solvents for drug delivery applications. Pharm Res. 39(10):2367–2377. doi: 10.1007/s11095-022-03315-w.
  • Rahman MS, Kyeremateng J, Saha M, Asare S, Uddin N, Halim MA, Raynie DE. 2022. Evaluation of the experimental and computed properties of choline chloride-water formulated deep eutectic solvents. J Mol Liq. 350:118520. doi: 10.1016/j.molliq.2022.118520.
  • Rajha, H.N., Mhanna, T., El Kantar, S., El Khoury, A., Louka, N., Maroun, R.G. 2019. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. L. 111:138–146. doi: 10.1016/j.lwt.2019.05.004.
  • Rashid, R., Mohd Wani, S., Manzoor, S., Masoodi, F.A., Masarat Dar, M. 2023. Green extraction of bioactive compounds from apple pomace by ultrasound-assisted natural deep eutectic solvent extraction: Optimisation, comparison, and bioactivity. Food Chem. 398:133871. doi: 10.1016/j.foodchem.2022.133871.
  • Samad A, Azlan A, Ismail A. 2016. Therapeutic effects of vinegar: A review. Curr Opin Food Sci. 8:56–61. doi: 10.1016/j.cofs.2016.03.001.
  • Silva, J.M., Silva, E., Reis, R.L., Duarte, A.R.C. 2019. A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain Chem Pharm. 14:100192. doi: 10.1016/j.scp.2019.100192.
  • Słupek, E., Makoś-Chełstowska, P., Gębicki, J. 2021. Removal of siloxanes from model biogas by means of deep eutectic solvents in absorption process. Mater (Basel). 14(2):1–20. doi: 10.3390/ma14020241.
  • Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., Bezirtzoglou, E. 2021. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 2021(10):9. doi: 10.3390/microorganisms9102041.
  • Wen, Q., Chen, J.-X., Tang, Y.-L., Wang, J., Yang, Z. 2015. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere. 132:63–69. doi: 10.1016/j.chemosphere.2015.02.061.
  • World Health Organization (WHO). 2009. East. Mediterr. Heal. J. = La Rev. santé la Méditerranée Orient. = al-Majallah al-ihhīyah li-sharq al-mutawassi. doi: 10.4324/9781315066547-73.
  • Wu, K., Ren, J., Wang, Q., Nuerjiang, M., Xia, X., Bian, C. 2022. Research progress on the preparation and action mechanism of natural deep eutectic solvents and their application in food. Foods. 11(21):3528. doi: 10.3390/foods11213528.
  • Yang, Z. 2019. Natural deep eutectic solvents and their applications in biotechnology. Appl Ion Liq Biotechnol. 31–59.
  • Yang, Z. 2019 Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. Deep Eutectic Solvents Synth Prop Appl Wiley‐VCH Verlag GmbH & Co. KGaA. 43–60.
  • Zhou, Z., Jian, D., Gong, M., Zhu, S., Li, G., Zhang, S., Zhong, F., Mao, J. 2020. Characterization of the key aroma compounds in aged Zhenjiang aromatic vinegar by gas chromatography-olfactometry-mass spectrometry, quantitative measurements, aroma recombination, and omission experiments. Food Res Int. 136:109434. doi: 10.1016/j.foodres.2020.109434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.