256
Views
5
CrossRef citations to date
0
Altmetric
Original Research Paper

Creep ductility of 1CrMoV rotor steel

Pages 99-108 | Received 22 Jun 2016, Accepted 09 Aug 2016, Published online: 24 Oct 2016

References

  • Holdsworth SR, Beech SM. Microstructural factors affecting notch creep rupture behaviour in high temperature power plant steels. In: Strang A, editor. Rupture ductility of creep resistant steels. York: Inst. Metals; 1990. p. 320–333.
  • Holdsworth SR. The ECCC approach to creep data assessment. In: Jaske CE, editor. Proceedings of CREEP8 8th International Conference on Creep and Fatigue at Elevated Temperatures, CREEP2007-26797; 2007, San Antonio (TX): ASME. p. 661–667.
  • Branch GD, Marriot JB, Murphy MC. The creep and creep-rupture properties of six CrMoV rotor forgings for high temperature steam turbines. In: Proceedings of International Conference on Properties of Creep Resistant Steels, Paper VIII-I; 1972; Dusseldorf; 1972.
  • Gooch DJ, Holdsworth SR, McCarthy PR. The influence of net section area on the notched bar creep rupture lives of three power plant steels. In: Wilshire B, Owen DJ, editors. Creep and fracture of engineering materials and structures; Swansea: Inst. Metals; 1987. p. 441–457.
  • Holdsworth SR, Mazza E. Using the results of creep crack incubation tests on CrMoV steel for predicting long time creep rupture properties. Int J Press Vessels Pip. 2009;86:838–844.10.1016/j.ijpvp.2009.10.004
  • Spindler MW. The multiaxial and uniaxial creep ductility of Type 304 steel as a function of stress and strain rate. Mater High Temp. 2004;21:47–54.10.1179/mht.2004.007
  • Binda, L. Advanced creep damage and deformation assessment of materials subject to steady and cyclic loading conditions at high temperatures [ dissertation ETH No. 18462]. ETH Zürich; 2010.
  • R5: Assessment Procedure for the High Temperature Response of Structures, Issue 3, EDF Energy Nuclear Generation Ltd.
  • Hales R. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance. Fatigue Fract Eng Mater Struct. 1983;6:121–135.10.1111/ffe.1983.6.issue-2
  • Holdsworth SR. Prediction of creep-fatigue behaviour at stress concentrations in 1CrMoV rotor steel. In: Proceedings of Conference on Life Assessment and Life Extension of Engineering Plant, Structures and Components. Churchill College (Cambridge), Engineering Materials Advisory Service; 1996. p. 137–146.
  • NRIM Creep Data Sheet No. 9B. Data sheets on the elevated-temperature properties of 1Cr-1Mo-0.25V steel forgings for turbine rotors and shafts (ASTM A470-8). Tokyo: NRIM; 1990.
  • Norton J, Strang A. Improvement of creep and rupture properties of large 1%Cr-Mo-V steam turbine rotor forgings. JISI. 1969;207:193–203.
  • Batte AD. Developments in the technology of rotor forgings for steam turbine generators. In: Workshop Proceedings: Rotor Forgings for Turbines and Generators. Palo alto (CA): EPRI; 1981. p. 3–190.
  • Butler PL. Unpublished; 1980.
  • Barraclough DR, Logsdon JR. The composition improvement factor – a life extension factor describing compositional trends within an alloy grade. In: Proceedings of Conference on Refurbishment and Life Extension of Steam Plant; London: I.Mech.E., MEP; 1987. p. 309–314.
  • Stone PG, Murray JD. Creep ductility of CrMoV steels. J Iron Steel Inst. 1965;203:1094–1107.
  • Hollomon JH, Jaffe LD. Time-temperature relations in tempering steels. Met Technol. 1945;223–249.
  • Chen SH, Takasugi T, Pope DP. The effects of trace impurities on the ductility of a Cr-Mo-V steel at elevated temperatures. Metall Trans A. 1983;14:571–580.10.1007/BF02643774
  • Cane BJ, Middleton CJ. Intergranular creep-cavity formation in low-alloy bainitic steels. Metal Sci. 1981;223–249.
  • George EP, Li PL, Pope DP. Creep cavitation in iron-I. Sulphides and carbides as nucleation sites. Acta Metall. 1987;35:2471–2486.10.1016/0001-6160(87)90144-1
  • Myers MR, Pilkington R, Needham NG. Cavity nucleation and growth in a 1%Cr−0.5%Mo steel. Mater Sci Eng. 1987;95:81–91.10.1016/0025-5416(87)90500-3
  • Wilkinson DS, Abiko K, Thyagarajan N, Pope DP. Compositional effects on the creep ductility of a low alloy steel. Metall Trans A. 1980;11:1827–1836.10.1007/BF02655098
  • Needham NG, Orr J. The effect of residuals on the elevated temperature properties of some creep resistant steels. Philos Trans R Soc London A. 1980;295:279–288.10.1098/rsta.1980.0107
  • Middleton CJ. Reheat cavity nucleation and nucleation control in bainitic creep-resisting low alloy steels: roles of manganese, sulphide, residual and sulphur-stabilising elements. Metal Sci. 1981: 15(4), 154–167.10.1179/030634581790426679
  • Kadoye Y, Kitai T, Tsuji I, et al. Effects of Cr, Mo, W, Mn and Ni on creep properties of 2¼CrMoV steel. J Iron Steel Inst Jpn. 1993;79:92–99.
  • Ratliff JL, Brown RM. The deleterious effect of small quantities of Al on the stress rupture properties of a CrMoV steel. Trans Am Soc Met. 1967;60:176–186.
  • Viswanathan R, Beck CG. Effect of aluminum on the stress rupture properties of Cr-Mo-V steels. Metall Trans A. 1975;6:1997–2003.10.1007/BF03161823
  • Benes F, Skvor P. Vliv medi a cinu na zarup evnost oceli CrMoV. Hutnické listy. [Influence of copper and tin in heat resistant CrMoV steel Hutnické listy, Rok 1972, cis. 3]. 1972:197–200.
  • Roan DF, Seth BB. A metallographic and fractographic study of the creep cavitation and fracture behaviour of 1Cr1Mo¼V rotor steels with controlled residual impurities. In: Ductility and toughness considerations in elevated temperature service. New York (NY): ASME; 1979. p. 79–97.
  • Seah MP. Impurities, segregation and creep embrittlement. Philos Trans R Soc London A. 1980;295:265–278.10.1098/rsta.1980.0106
  • Viswanathan R. Effects of residual elements on creep properties of ferritic steels. Met Eng Q. 1975: 50–56.
  • Viswanathan R. Effect of Ti and Ti+B additions on the creep properties of 1.25 Cr-0.5 Mo steels. Metall Trans A. 1977;8:57–61.10.1007/BF02677264
  • Batte AD, Brear JM, Holdsworth SR, et al. The effects of residual elements and deoxidation practice on the mechanical properties and stress relief cracking susceptibility of ½CrMoV turbine castings. Philos Trans R Soc London A. 1980;295:253–264.10.1098/rsta.1980.0105
  • Monkman FC, Grant NJ. An empirical relationship between rupture life and minimum creep rate in creep rupture tests. Proc Am Soc Test Mater. 1956;56:593–620.
  • Holdsworth SR. Initiation and early growth of creep cracks from pre-existing defects. Mater High Temp. 1992;10:127–137.10.1080/09603409.1992.11689410
  • Riedel H. Fracture at high temperatures. Berlin: MRE Springer Verlag; 1987.10.1007/978-3-642-82961-1
  • Ainsworth RA. The initiation of creep crack growth. Int J Solids Struct. 1982;18:873–881.10.1016/0020-7683(82)90071-3
  • Neate GJ. Creep crack growth behavior in 0.5CrMoV steel at 838K. Mater Sci Eng. 1986;82: ‘Part I: Behaviour at a constant load’, 59–76; ‘Part II: Behaviour under displacement controlled loading’, 77–84.
  • Priest RH, Ellison EG. A combined deformation map-ductility exhaustion approach to creep-fatigue analysis. Mater Sci Eng. 1981;49:7–17.10.1016/0025-5416(81)90128-2
  • Miller D, Priest RH, Ellison EG. A review of material response and life prediction techniques. High Temp Mater Processes. 1984;6:155–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.