212
Views
11
CrossRef citations to date
0
Altmetric
Original Research Paper

Prediction of creep crack initiation in Cr–Mo–V steel specimens with different geometries

, , &
Pages 87-96 | Received 25 Aug 2016, Accepted 16 Oct 2016, Published online: 04 Nov 2016

References

  • Webster GA, Ainsworth RA. High temperature component life assessment. London: Chpman & Hall; 1994.10.1007/978-94-017-1771-7
  • ASTM E1457-15. Standard test method for measurement of creep crack growth rates in metals. ASTM Standards, West Conshohocken (PA): ASTM International; 2015.
  • Tan M, Celard NJC, Nikbin KM, et al. Comparison of creep crack initiation and growth in four steels tested in HIDA. Int J Press Vessels Pip. 2001;78:737–747.10.1016/S0308-0161(01)00085-0
  • Dogan B, Ceyhan U, Nikbin K, et al. European code of practice for creep crack initiation and growth testing of industrially relevant specimens. J ASTM Int. 2006;3:1–20.
  • Zhao L, Jing H, Xu L, et al. Evaluation of constraint effects on creep crack growth by experimental investigation and numerical simulation. Eng Fract Mech. 2012;96:251–266.10.1016/j.engfracmech.2012.08.009
  • Tan JP, Tu ST, Wang GZ, et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr–Mo–V steel. Eng Fract Mech. 2013;99:324–334.
  • Tan JP, Wang GZ, Xuan FZ, et al. Experimental investigation of in-plane constraint and out-of-plane constraint effects on creep crack growth. In ASME 2012 Pressure Vessels and Piping Conference, Toronto, Canada; 2012. p. 271–275.
  • Zhao L, Jing H, Xiu J, et al. Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint. Mater Des. 2014;57:736–743.10.1016/j.matdes.2013.12.062
  • Yamamoto M, Miura N, Ogata T. Effect of constraint on creep crack propagation of mod. 9Cr-1Mo steel weld joint. In ASME 2009 Pressure Vessels and Piping Conference, Prague, Czech Republic; 2009. p. 1533–1539.
  • Bettinson AD, O’Dowd NP, Nikbin KM, et al. Experimental investigation of constraint effects on creep crack growth. In ASME 2002 Pressure Vessels and Piping Conference, Vancouver, Canada; 2002. p. 143–150.
  • Bettinson AD, Nikbin KM, O’Dowd NP, et al. The influence of constraint on the creep crack growth in 316H stainless steel. In 5th International Conference Structural Integrity Assessment, Cambridge, UK; 2000.
  • Zhao L, Xu L, Han Y, et al. Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel. Int J Mech Sci. 2015;94–95:63–74.10.1016/j.ijmecsci.2015.02.009
  • Davies CM, Mueller F, Nikbin KM, et al. Analysis of creep crack initiation and growth in different geometries for 316H and carbon manganese steels. J ASTM Int. 2006;3:1–20.
  • Davies CM, Dean DW, Yatomi M, et al. The influence of test duration and geometry on the creep crack initiation and growth behaviour of 316H steel. Mater Sci Eng A. 2009;510–511:202–206.10.1016/j.msea.2008.04.109
  • Zhang JW, Wang GZ, Xuan FZ, et al. In-plane and out-of-plane constraint effects on creep crack growth rate in Cr–Mo–V steel for wide range of C*. Mater High Temp. 2015;32:512–523.10.1179/1878641314Y.0000000039
  • Mehmanparast A. Prediction of creep crack growth behaviour in 316H stainless steel for a range of specimen geometries. Int J Press Vessels Pip. 2014;120–121:55–65.10.1016/j.ijpvp.2014.05.006
  • Zhang JW, Wang GZ, Xuan FZ, et al. Prediction of creep crack growth behavior in Cr–Mo–V steel specimens with different constraints for a wide range of C∗. Eng Fract Mech. 2014;132:70–84.
  • Kim N-H, Oh C-S, Kim Y-J, et al. Creep failure simulations of 316H at 550 & #xB0;C: Part II – effects of specimen geometry and loading mode. Eng Fract Mech. 2013;105:169–181.10.1016/j.engfracmech.2013.04.001
  • Davies CM, Wimpory RC, Dean DW, et al. Specimen geometry effects on creep crack initiation and growth in parent materials and weldments. In Pressure Vessels and Piping Conference, Baltimore, MD, USA; 2011. p. 153–161.
  • Quintero H, Mehmanparast A. Prediction of creep crack initiation behaviour in 316H stainless steel using stress dependent creep ductility. Int J Solids Struct. 2016;97–98:101–115. doi:10.1016/j.ijsolstr.2016.07.039
  • Iino Y. Creep plastic zone and crack initiation in double edge notched specimens of 304 stainless steel at 650 °C. Mater Sci Eng A. 2008;483–484:502–505.10.1016/j.msea.2006.09.150
  • Davies CM. Predicting creep crack initiation in austenitic and ferritic steels using the creep toughness parameter and time-dependent failure assessment diagram. Fatigue Fract Eng Mater Struct. 2009;32:820–836.10.1111/ffe.2009.32.issue-10
  • Davies CM, O’Dowd NP, Dean DW, et al. Failure assessment diagram analysis of creep crack initiation in 316H stainless steel. Int J Press Vessels Pip. 2003;80:541–551.10.1016/S0308-0161(03)00107-8
  • Klenk A, Mueller F, Dean D, et al. Developments in the use of creep crack initiation for design and performance assessment. Mater High Temp. 2004;21:33–39.10.1179/mht.2004.005
  • Ewald J, Sheng S, Klenk A, et al. Engineering guide to assessment of creep crack initiation on components by two-criteria-diagram. Int J Press Vessels Pip. 2001;78:937–949.10.1016/S0308-0161(01)00109-0
  • Mueller F, Scholz A, Berger C. Comparison of different approaches for estimation of creep crack initiation. Eng Fail Anal. 2007;14:1574–1585.10.1016/j.engfailanal.2006.12.004
  • Tan JP. Creep life assessment of structures containing crack incorporating constraint effect [doctoral dissertation]. Shanghai: East China University of Science and Technology; 2014.
  • Zhang JW, Wang GZ, Xuan FZ, et al. The influence of stress-regime dependent creep model and ductility in the prediction of creep crack growth rate in Cr–Mo–V steel. Mater Des. 2015;65:644–651.10.1016/j.matdes.2014.09.070
  • Mehmanparast A, Davies CM, Webster GA, et al. Creep crack growth rate predictions in 316H steel using stress dependent creep ductility. Mater High Temp. 2014;31:84–94.10.1179/0960340913Z.00000000011
  • Hibbitt, Karlsson & Sorensen. ABAQUS user’s manual, version 6.10. (RI): ABAQUS Inc; 2011.
  • Yatomi M, Nikbin KM, O’Dowd NP. Creep crack growth prediction using a damage based approach. Int J Press Vessels Pip. 2003;80:573–583.10.1016/S0308-0161(03)00110-8
  • Tan JP, Wang GZ, Xuan FZ, et al. Creep crack growth in a Cr–Mo–V type steel: experimental observation and prediction. Acta Metall Sinica. 2011;24:81–91.
  • Oh C-S, Kim N-H, Kim Y-J, et al. Creep failure simulations of 316H at 550 °C: Part I – A method and validation. Eng Fract Mech. 2011;78:2966–2977.10.1016/j.engfracmech.2011.08.015
  • Cocks ACF, Ashby MF. Intergranular fracture during power-law creep under multiaxial stresses. Met Sci. 1980;14:395–402.10.1179/030634580790441187
  • Samuel EI, Choudhary BK, Palaparti DPR, et al. Creep deformation and rupture behaviour of P92 steel at 923 K. Procedia Eng. 2013;55:64–69.10.1016/j.proeng.2013.03.220
  • Takahashi Y, Shibamoto H, Inoue K. Long-term creep rupture behavior of smoothed and notched bar specimens of low-carbon nitrogen-controlled 316 stainless steel (316FR) and their evaluation. Nucl Eng Des. 2008;238:310–321.10.1016/j.nucengdes.2006.09.010
  • Tan JP, Wang GZ, Tu ST, et al. Load-independent creep constraint parameter and its application. Eng Fract Mech. 2014;116:41–57.10.1016/j.engfracmech.2013.12.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.