145
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Rate-dependent low cycle fatigue and ratcheting of 25Cr2MoVA steel under cyclic pulsating tension

, , , , &
Pages 482-489 | Received 14 Jul 2017, Accepted 25 Sep 2017, Published online: 09 Oct 2017

References

  • Wang YQ , Wu JK , Liu HB , et al . Modeling and numerical analysis of multi-bolt elastic interaction with bolt stress relaxation. Proc Inst Mech Eng C J Mech Eng. Sci. 2016;230:2579–2587.10.1177/0954406215615155
  • Chu WY , Wang YB , Qiao LJ . Interaction between blue brittleness and stress corrosion cracking. J Nucl Mater. 2000;280:250–254.10.1016/S0022-3115(00)00065-9
  • Shou BN , Chen G , Zheng JY , et al . GB 150 stationary pressure vessels, Part 2: Materials. Beijing: the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; 2011.
  • Zheng XT , Wu KW , Wang W , et al . Low cycle fatigue and ratcheting behavior of 35CrMo structural steel at elevated temperature. Nucl Eng Des. 2017;314:285–292.10.1016/j.nucengdes.2017.01.016
  • Wang W , Zheng XT , Yu JY , et al . Time-dependent ratcheting of 35CrMo structural steel at elevated temperature considering stress rates. Mater High Temp. 2017;34:172–178.10.1080/09603409.2016.1261511
  • Kang GZ , Zhang J , Sun YY , et al . Uniaxial time-dependent ratcheting of SS304 stainless steel at high temperatures. J Iron Steel Res Int. 2007;14:53–59.10.1016/S1006-706X(07)60012-0
  • Kang GZ , Gao Q , Cai LX , et al . Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures. Nucl Eng Des. 2002;216:13–26.10.1016/S0029-5493(02)00062-6
  • Zheng XT , Xuan FZ , Zhao P . Ratcheting-creep interaction of advanced 9–12% chromium ferrite steel with anelastic effect. Int J Fatigue. 2011;33:1286–1291.10.1016/j.ijfatigue.2011.04.009
  • Wu DL , Xuan FZ , Guo SJ , et al . Uniaxial mean stress relaxation of 9–12% Cr steel at high temperature: Experiments and viscoplastic constitutive modeling. Int J Plasticity. 2016;77:156–173.10.1016/j.ijplas.2015.10.001
  • Zhao P , Xuan FZ . Ratchetting behavior of advanced 9–12% chromium ferrite steel under creep-fatigue loadings. Mech Mater. 2011;43:299–312.10.1016/j.mechmat.2011.03.002
  • Masanori A , Masanori H , Yoko AO , et al . Effect of ratchet strain on fatigue and creep-fatigue strength of modified 9Cr-1Mo steel. Nucl Eng Des. 2012;247:66–75.
  • Date S , Ishikawa H , Otani T , et al . Effect of ratcheting deformation on fatigue and creep-fatigue life of 316FR stainless steel. Nucl Eng Des. 2008;238:336–346.10.1016/j.nucengdes.2006.09.009
  • Guo JQ , Zheng XT , Zhang Y , et al . A unified continuum damage mechanics model for predicting the stress relaxation behavior of high-temperature bolting. ASME J Pres Ves Tech. 2013;136:#011203.
  • Guo JQ , Meng WZ , Zheng XT , et al . Prediction of stress relaxation from creep data in terms of average creep rate. J Strain Anal Eng Des. 2015;50:15–24.10.1177/0309324714555151
  • Guo JQ , Li F , Zheng XT , et al . An accelerated method for creep prediction from short term stress relaxation tests. J Pres Ves Tech. 2016;138:#031401.
  • Majzoobi GH , Farrahi GH , Habibi N . Experimental evaluation of the effect of thread pitch on fatigue life of bolts. Int J Fatigue. 2005;27:189–196.10.1016/j.ijfatigue.2004.06.011
  • Korin I , Ipiña JP . Experimental evaluation of fatigue life and fatigue crack growth in a tension bolt-nut threaded connection. Int J Fatigue. 2011;33:166–175.10.1016/j.ijfatigue.2010.08.003
  • Patterson EA . A comparative study of methods for estimating bolt fatigue limits. Fatigue Frac Eng Mater Struct. 2010;13:59–81.
  • Jiang YY , Zhang M . A study of early stage self-loosening of bolted joints. J Mech Des. 2003;125:518–526.10.1115/1.1586936
  • Jiang YY , Zhang M . An experimental study of self-loosening of bolted joints. J Mech Des. 2004;129:925–931.10.1115/1.1767814
  • Ahmed R , Barrett PR , Hassan T . Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress-strain responses of Haynes 230. Int J Solids Struct. 2016;88–89:131–145.10.1016/j.ijsolstr.2016.03.012
  • Barrett PR , Ahmed R , Menon M , et al . Isothermal low-cycle fatigue and fatigue-creep of Haynes 230. Int J Solids Struc. 2016;88–89:146–164.10.1016/j.ijsolstr.2016.03.011
  • Zhao P , Xuan FZ . Study on creep-fatigue damage evaluation for advanced 9–12% chromium steels under stress controlled cycling. Acta Metal Sinica (English Letters). 2011;24:148–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.