382
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Low cycle fatigue modeling for nickel-based single crystal superalloy

&
Pages 535-545 | Received 13 Aug 2017, Accepted 11 Jan 2018, Published online: 23 Jan 2018

References

  • Okazaki M , Sakaguchi M . Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy. Int J Fatigue. 2008;30:318–323.10.1016/j.ijfatigue.2007.01.044
  • Han GM , Yu JJ , Sun XF , et al . Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy. Mater Sci Eng A. 2011;528:6217–6224.10.1016/j.msea.2011.04.083
  • Rémy L , Geuffrard M , Alam A , et al . Effects of microstructure in high temperature fatigue: lifetime to crack initiation of a single crystal superalloy in high temperature low cycle fatigue. Int J Fatigue. 2013;57:37–49.10.1016/j.ijfatigue.2012.10.013
  • Li P , Li QQ , Jin T , et al . Comparison of low-cycle fatigue behaviors between two nickel-based single-crystal superalloys. Int J Fatigue. 2014;63:137–144.10.1016/j.ijfatigue.2014.01.018
  • Naik RA , DeLuca DP , Shah DM . Critical plane fatigue modeling and characterization of single crystal nickel superalloys. J Eng Gas Turb Power. 2004;126:391–400.10.1115/1.1690768
  • Cormier J , Cailletaud G . Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations. Mater Sci Eng A. 2010;527:6300–6312.10.1016/j.msea.2010.06.023
  • le Graverend JB , Cormier J , Gallerneau F , et al . A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal nickel-based superalloys at very high temperature. Int J Plasticity. 2014;59:55–83.10.1016/j.ijplas.2014.03.004
  • Segersäll M , Leidermark D , Moverare JJ . Influence of crystal orientation on the thermomechanical fatigue behaviour in a single-crystal superalloy. Mater Sci Eng A. 2015;623:68–77.10.1016/j.msea.2014.11.026
  • le Graverend JB , Cormier J , Gallerneau F , et al . Strengthening behavior in non-isothermal monotonic and cyclic loading in a Ni-based single crystal superalloy. Int J Fatigue. 2016;91:257–263.10.1016/j.ijfatigue.2016.06.018
  • Arakere NK , Swanson G . Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys. J Eng Gas Turb Power. 2002;124:161–176.10.1115/1.1413767
  • Arakere NK . High-temperature fatigue properties of single crystal superalloys in air and hydrogen. J Eng Gas Turb Power. 2004;126:590–603.10.1115/1.1501075
  • Levkovitch V , Sievert R , Svendsen B . Simulation of deformation and lifetime behavior of a fcc single crystal superalloy at high temperature under low-cycle fatigue loading. Int J Fatigue. 2006;28:1791–1802.10.1016/j.ijfatigue.2005.12.006
  • Yue ZF , Yu QM , Wen ZX , et al . Strength design for nickel-based single crystal turbine blades. Beijing: Science Press; 2008.
  • Shi DQ , Huang J , Yang XG , et al . Effects of crystallographic orientations and dwell types on low cycle fatigue and life modeling of a SC superalloy. Int J Fatigue. 2013;49:31–39.10.1016/j.ijfatigue.2012.12.005
  • Hou NX , Gou WX , Wen ZX , et al . The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Mater Sci Eng A. 2008;492:413–418.10.1016/j.msea.2008.03.043
  • Leidermark D , Moverare J , Simonsson K , et al . Fatigue crack initiation in a notched single-crystal superalloy component. Procedia Eng. 2010;2:1067–1075.10.1016/j.proeng.2010.03.115
  • Shi DQ , Yang XG , Yu HC . Fatigue life prediction model for nickel-based single crystal and directionally solidified superalloy. J Aerospace Power. 2010;25:1871–1875.
  • Ding ZP . Study on multiaxial low cycle fatigue damage of single crystal nickel-based superalloy [PhD thesis]. China: Central South University; 2005.
  • Li SX , Smith DJ . High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: part II- fatigue-creep life behaviour. Fatigue & Fracture of Engineering Materials & Structures. 1995;18:631–643.10.1111/ffe.1995.18.issue-5
  • Dong CL , Yu HC , Li Y , et al . Life modeling of anisotropic fatigue behavior for a single crystal nickel-base superalloy. Int J Fatigue. 2014;61:21–27.10.1016/j.ijfatigue.2013.11.026
  • Dong CL , Yu HC , Li Y . Fatigue life modeling of a single crystal superalloy and its thin plate with a hole at elevated temperature. Mater Des. 2015;66:284–293.10.1016/j.matdes.2014.10.071
  • Brien V , Décamps B . Low cycle fatigue of a nickel based superalloy at high temperature: deformation microstructures. Mater Sci Eng A. 2001;316:18–31.10.1016/S0921-5093(01)01235-7
  • MacLachlan DW , Knowles DM . Fatigue behaviour and lifing of two single crystal superalloys. Fatigue Fract Eng Mater Struct. 2001;24:503–521.10.1046/j.1460-2695.2001.00392.x
  • Zhou H , Ro Y , Harada H , et al . Deformation microstructures after low-cycle fatigue in a fourth-generation Ni-base SC superalloy TMS-138. Mater Sci Eng A. 2004;381:20–27.10.1016/j.msea.2004.04.051
  • Hong HU , Kang JG , Choi BG , et al . A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy. Int J Fatigue. 2011;33:1592–1599.10.1016/j.ijfatigue.2011.07.009
  • Kandil FA , Brown MW , Miller kJ . Biaxial low cycle fatigue of 316 stainless stell at elevated temperatures. Metals Soc. 1982;14:203–210.
  • Bannantine JA , Socie DF . Observations of cracking behavior in tension and torsion low cycle fatigue. ASTM Spec Tech Publ. 1988;942:899–921.
  • Wang RQ , Jin PL , Hu DY . Fatigue life prediction model based on critical plane of nickel-based single crystal superalloy. J Aerosp Power. 2013;28:2587–2592.
  • Sun WC , Lu S . LCF life model of single crystal alloys based on multivariate factors. J Mech Strength. 2013;35:657–662.
  • Leidermark D , Moverare J , Simonsson K , et al . A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components. Int J Fatigue. 2011;33:1351–1359.10.1016/j.ijfatigue.2011.05.009
  • Taylor D . The theory of critical distances: a new perspective in fracture mechanics. Oxford: Elsevier; 2007.
  • Taylor D . The theory of critical distances. Eng Fract Mech. 2008;75:1696–1705.10.1016/j.engfracmech.2007.04.007
  • Yang XG , Wang JK , Liu JL . High temperature LCF life prediction of notched DS Ni-based superalloy using critical distance concept. Int J Fatigue. 2011;33:1470–1476.10.1016/j.ijfatigue.2011.05.018
  • Xin PP , Hu XT , Song YD . LCF life prediction for TC4 alloy notched specimens based on theory of critical distance. J Aerosp Power. 2012;27:1105–1112.
  • Yao WX . Stress field intensity approach for predicting fatigue life. Int J Fatigue. 1993;15:243–245.
  • Shang DG , Wang DK , Li M , et al . Local stress–strain field intensity approach to fatigue life prediction under random cyclic loading. Int J Fatigue. 2001;23:903–910.10.1016/S0142-1123(01)00051-2
  • Wang YR , Li HX , Yuan SH , et al . Method for notched fatigue life prediction with stress gradient. J Aerosp Power. 2013;28:1208–1214.
  • Leidermark D , Moverare J , Simonsson K , et al . Room temperature yield behaviour of a single-crystal nickel-base superalloy with tension/compression asymmetry. Comp Mater Sci. 2009;47:366–372.10.1016/j.commatsci.2009.08.012
  • Busso EP , Meissonnier FT , O’Dowd NP . Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids. 2000;48:2333–2361.10.1016/S0022-5096(00)00006-5
  • Fedelich B . A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int J Plasticity. 2002;18:1–49.10.1016/S0749-6419(00)00045-0
  • Nissley DM , Meyer TG , Walker KP . Life prediction and constitutive models for engine hot section anisotropic material program. NASA-CR-189222. East Hartford (CT): United Technologies Corp.; 1992.
  • Tang HB , Guo HD . Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy. Int J Mater Res. 2017;108:163–172.10.3139/146.111466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.