309
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A coupled creep damage evolution model and creep life evaluation

&
Pages 253-264 | Received 06 May 2018, Accepted 13 Jul 2018, Published online: 23 Oct 2018

References

  • Wu R, Sandström R, Storesund J. Creep strain behaviour in a 12%CrMoV steel. Mater High Temp. 1994;12(4):277–283.
  • Wilshire B, Carren˜o F. Deformation and failure processes during tensile creep of fibre and whisker reinforced SiC/Al2O3 composites. Mater Sci Eng A. 1999;272:38–44.
  • Dobeš F, Milicˇka K. On the Monkman-Grant relation for small punch test data. Mater Sci Eng A. 2002;336(1–2):245–248.
  • Wilshire B, Scharning PJ. Rationalization and extrapolation of creep and creep fracture data for grade 91 steel. Mater High Temp. 2008;25(2):55–65.
  • Takahashi Y. Study on creep-fatigue evaluation procedures for high-chromium steels – part I: test results and life prediction based on measured stress relaxation. Int J Press Vessel Pip. 2008;85:406–422.
  • Takahashi Y. Study on creep-fatigue evaluation procedures for high-chromium steels – part II: sensitivity to calculated deformation. Int J Press Vessel Pip. 2008;85:423–440.
  • Mentl V. An application of a phenomenological theory of creep damage. Mater High Temp. 2006;23(3–4):195–200.
  • Wilshire B, Scharning PJ. Extrapolation of creep life data for 1Cr–0.5Mo steel. Int J Press Vessel Pip. 2008;85:739–743.
  • Holmström S, Auerkari P. Effect of short-term data on predicted creep rupture life – pivoting effect and optimized censoring. Mater High Temp. 2008;25(3):103–109.
  • Srinivasan VS, Choudhary BK, Mathew MD, et al. Long-term creep-rupture strength prediction for modified 9Cr–1Mo ferritic steel and type 316L(N) austenitic stainless steel. Mater High Temp. 2012;29(1):41–48.
  • Eggeler G. The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metall. 1989;37(12):3225–3234.
  • Yuan Y, Gu YF, Cui CY, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature. Mater Sci Eng A. 2011;528:5106–5111.
  • Chen HS, Long CS, Xiao HX, et al. Microstructure and creep mechanism of the Ag–In–Cd alloy under compressive load at 300–400°C. Mater Des. 2015;65:468–472.
  • Xu L, Sun CQ, Cui CY, et al. Effects of microstructure on the creep properties of a new Ni–Co base superalloy. Mater Sci Eng A. 2016;678:110–115.
  • Pétry C, Lindet G. Modelling creep behaviour and failure of 9Cr–0.5Mo–1.8W–vNb steel. Int J Press Vessel Pip. 2009;86:486–494.
  • He JJ, Sandström R. Basic modelling of creep rupture in austenitic stainless steels. Theor Appl Fract Mech. 2017;89:139–146.
  • Zhao YR, Yao HP, Song XL, et al. On the physical models for predicting the long-term creep strengths and lifetimes of modified 9Cr–1Mo steel. J Alloy Compd. 2017;726:1246–1254.
  • Kim TW, Kang DH, Yeom JT, et al. Continuum damage mechanics-based creep-fatigue-interacted life prediction of nickel-based superalloy at high temperature. Scripta Mater. 2007;57:1149–1152.
  • Spindler MW. The prediction of creep damage in type 347 weld metal. Part I: the determination of material properties from creep and tensile tests. Int J Press Vessel Pip. 2005;82:175–184.
  • Spindler MW. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests. Int J Press Vessel Pip. 2005;82:185–194.
  • Lombardi P, Cipolla L, Folgarait P, et al. New time-independent formulation for creep damage in polycrystalline metals and its specialisation to high alloy steel for high-temperature applications. Mater Sci Eng A. 2009;510-511:214–218.
  • Hyde TH, Xia L, Becker AA. Prediction of creep failure in aeroengine materials under multi-axial stress states. Int J Mech Sci. 1996;38(4):385–403.
  • Goyal S, Laha K, Panneer Selvi S, et al. Mechanistic approach for prediction of creep deformation, damage and rupture life of different Cr–Mo ferritic steels. Mater High Temp. 2014;31(3):211–220.
  • Besson J, Leclercq S, Gaffard V, et al. Analysis of creep lifetime of a ASME Grade 91 welded pipe. Eng Fract Mech. 2009;76:1460–1473.
  • Hayhurst DR, Vakili-Tahami F, Zhou JQ. Constitutive equations for time independent plasticity and creep of 316 stainless steel at 550°C. Int J Press Vessel Pip. 2003;80:97–109.
  • Mustata R, Hayhurst DR. Creep constitutive equations for a 0.5Cr 0.5Mo 0.25V ferritic steel in the temperature range 565°C–675°C. Int J Press Vessel Pip. 2005;82:363–372.
  • Semba H, Dyson B, McLean M. Microstructure-based creep modelling of a 9%Cr martensitic steel. Mater High Temp. 2008;25(3):131–137.
  • Goyal S, Laha K, Das CR, et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behaviour of 2.25Cr–1Mo steel. Mater Sci Eng A. 2013;563:68–77.
  • Alang NA, Nikbin K. An analytical and numerical approach to multiscale ductility constraint based model to predict uniaxial/multiaxial creep rupture and cracking rates. Int J Mech Sci. 2018;135:342–352.
  • Hyde TH, Sun W, Williams JA. Prediction of creep failure life of internally pressurised thick walled CrMoV pipes. Int J Press Vessel Pip. 1999;76:925–933.
  • Hyde TH, Sun W, Williams JA. Creep behaviour of parent, weld and HAZ materials of new, service-aged and repaired 1/2Cr1/2Mo1/4V: 2 1/4Cr1Mo pipe welds at 640°C. Mater High Temp. 1999;16(3):117–129.
  • Yang SS, Ling X, Zheng YY, et al. Creep life analysis by an energy model of small punch creep test. Mater Des. 2016;91:98–103.
  • Feng X, Xu T, Qin Y, et al. Determination of creep properties of P91 by small punch testing. Mater High Temp. 2015;32(4):355–362.
  • Htun NCZ, Nguyen TT, Yoon KB, et al. Small punch and uniaxial creep fracture behaviours of modified SUS304H steel at various temperatures. Mater High Temp. 2018;35(4):378–386.
  • Terada Y, Murata Y, Sato T. Creep life assessment of a die-cast Mg–5Al–0.3Mn. alloy Mater Sci Eng A. 2013;584:63–66.
  • Luo Y, Jiang WC, Zhang YC, et al. Creep rupture behavior of hastelloy C276–bNi2 brazed joint. Mater Sci Eng A. 2018;711:223–232.
  • Kloc L, Dymáček P, Sklenička V. High temperature creep of sanicro 25 austenitic steel at low stresses. Mater Sci Eng A. 2018;722:88–92.
  • Sawada K, Kubo K, Abe F. Creep behavior and stability of MX precipitates at high temperature in 9Cr–0.5Mo–1.8W–vNb steel. Mater Sci Eng A. 2001;319-321:784–787.
  • Kimura K, Sawada K, Kushima H, et al. Effect of stress on the creep deformation of ASME Grade P92/T92 steels. Int J Mat Res. 2008;99:395–401.
  • Dieter GE. Mechanical metallurgy. New York: McGraw-Hill; 1976.
  • Kachanov LM. Introduction to continuum damage mechanics. Dordrecht: Martinus Nijhoff; 1986.
  • Vaillant JC, Vandenberghe B, Hahn B, et al. T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants—properties and experience. Int J Press Vessel Pip. 2008;85:38–46.
  • Terada Y, Murata Y, Sato T. Life assessment of die-cast Mg-5Al-1.7Ca alloys under creep service conditions. Mater Sci Eng A. 2014;613:136–140.
  • Sakthivel T, Vasudevan M, Laha K, et al. Creep rupture behavior of 9Cr–1.8W–0.5Mo–vNb (ASME grade 92) ferritic steel weld joint. Mater Sci Eng A. 2014;591:111–120.
  • Lee JS, Armaki HG, Maruyama K, et al. Causes of breakdown of creep strength in 9Cr–1.8W–0.5Mo–vNb steel. Mater Sci Eng A. 2006;428:270–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.