363
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Creep lifetime prediction of virgin and service-exposed Super304H austenitic stainless steel boiler tubes based on hierarchical multiscale analysis and creep cavitation model

, , , , , & show all
Pages 16-31 | Received 05 Apr 2019, Accepted 22 Aug 2019, Published online: 16 Nov 2019

References

  • Masuyama F. History of power plants and progress in heat resistant steels. ISIJ Int. 2001;41:612–625.
  • Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants—boiler materials: part 1. J Mater Eng Perform. 2001;10:81–95.
  • Holcomb GR, Alman DE, Bullard SB, et al.. ULTRA-SUPERCRITICAL STEAM CORROSION. US: Sponsor Org: USDOE Office of Fossil Energy (FE); 2003.
  • Chi C, Yu H, Dong J, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–cr–ni type austenitic heat resistant steel for USC power plant application. Pro Nat Sci-Mater. 2012;22(3):175–185.
  • Ou P, Li L, Xie X, et al. Steady-state creep behavior of Super304H austenitic steel at elevated temperatures. Acta Metall Sin. 2015;28:1336–1343.
  • Sawaragi Y, Otsuka N, Senba H, et al. Properties of a new 18-8 austenitic steel tube (SUPER 304H) for fossil fired boilers after service exposure with high elevated temperature strength. Sumitomo Search. 1994;54:34–43.
  • Iseda A, Okada H, Semba H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers. Energy Mater. 2007;2:199–206.
  • Fields RJ, Weerasooriya T, Ashby MF. Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel. Metall Trans A. 1980;11:333–347.
  • Yagi K, Merckling G, Kern TU, et al. Creep Properties of Heat Resistant Steels and Superalloys. Berlin: Springer; 2004.
  • Nam SW. Assessment of damage and life prediction of austenitic stainless steel under high temperature creep–fatigue interaction condition. Mater Sci Eng A. 2002;322(1):64–72.
  • Hull D, Rimmer DE. The growth of grain-boundary voids under stress. Philos Mag. 1959;4:673–687.
  • Edward GH, Ashby MF. Intergranular fracture during power-law creep. Acta Metall. 1979;27(9):1505–1518.
  • Nicolaou PD, Semiatin SL, Ghosh AK. An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materials. Metall Mater Trans A. 2000;31:1425.
  • Kassner ME, Hayes TA. Creep cavitation in metals. Int J Plast. 2003;19(10):1715–1748.
  • Dunlop GL, Shapiro E, Taplin DMR, et al. Cavitation at grain and phase boundaries during superplastic flow of an aluminum bronze. Metall Trans. 1973;4:2039–2044.
  • Asaro RJ. Crystal Plasticity. J Appl Mech. 1983;50:921–934.
  • Asaro RJ. Micromechanics of crystals and polycrystals. Advances in Applied Mechanics. 1983;23:1–115.
  • Asaro RJ, Needleman A. Overview no. 42 Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 1985;33(6):923–953.
  • Bronkhorst CA, Kalidindi SR, Anand L. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Philos Trans Phys Sci Eng. 1992;341:443.
  • Kalidindi SR, Bronkhorst CA, Anand L. Crystallographic texture evolution in bulk deformation processing of FCC metals. J Mech Phys Solids. 1992;40(3):537–569.
  • Kalidindi SR, Anand L. Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J Mech Phys Solids. 1994;42(3):459–490.
  • Kröner E. On the plastic deformation of polycrystals. Acta Metall. 1961;9(2):155–161.
  • Bishop JFW, Hill R XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. London, Edinburgh, Dublin Philos Mag J Sci. 1951;42:414–427.
  • Taylor GI. Plastic strain in metals. Journal of the Institute of Metals. 1938;62:307–324.
  • Courtney TH. Mechanical behavior of materials. Second ed. Illinois: Waveland Press; 2005.
  • Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 10th ed. New Jersey, NY: Wiley; 2018.
  • Roters F. Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework. Habilitation Thesis, RWTH Aachen, Fakultät für Georessourcen und Materialtechnik, Aachen, Germany; 2011.
  • Marin EB, Dawson PR. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput Methods Appl Mech Eng. 1998;165(1):1–21.
  • Marin EB. On the formulation of a crystal plasticity model.Sandia National Laboratories, CA, SAND2006-4170; 2006.
  • Thamburaja P, Anand L. Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids. 2001;49(4):709–737.
  • Lan YJ, Xiao NM, Li DZ, et al. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model. Acta Materialia. 2005;53(4):991–1003.
  • Tjahjanto DD, Turteltaub S, Suiker ASJ. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels. Continuum Mech Thermodyn. 2008;19:399–422.
  • Anand L, Su C. A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J Mech Phys Solids. 2005;53(6):1362–1396.
  • Anand L, Su C. A constitutive theory for metallic glasses at high homologous temperatures. 2007;55(11):3735–3747.
  • Kalidindi SR. Incorporation of deformation twinning in crystal plasticity models. 1998;46(2):267–290.
  • Staroselsky A, Anand L. Inelastic deformation of polycrystalline face centered cubic materials by slip and twinning. 1998;46(4):671–696.
  • Marketz WT, Fischer FD, Kauffmann F, et al. On the role of twinning during room temperature deformation of γ-TiAl based alloys. 2002;329–331:177–183.
  • Salem AA, Kalidindi SR, Semiatin SL. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crystal-plasticity modeling. 2005;53(12):3495–3502.
  • Wei YJ, Anand L. Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. 2004;52(11):2587–2616.
  • Wei Y, Su C, Anand L. A computational study of the mechanical behavior of nanocrystalline fcc metals. 2006;54(12):3177–3190.
  • Lim R. Numerical and experimental study of creep of Grade 91 steel at high temperature. France: Ecole Nationale Superieure des Mines de Paris Univ; 2011.
  • Riedel H. Fracture at High Temperatures. Berlin Heidelberg: Springer-Verlag; 1987.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • International ASTM. Standard test method for macroetching metals and alloys. West Conshohocken: PA: ASTM International; 2006; .
  • ABAQUS, version 2017. Dassault Systèmes Simulia Corp.; 2016.
  • Groeber MA, Jackson MA. DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov. 2014;3:5.
  • Nguyen TT, Jeong TM, Erten DT, et al. Creep deformation and rupture behavior of service-exposed Super304H steel boiler tubes. Mater High Temp. Accepted. 2019.
  • Nishiyama Z. 2 - crystallography of martensite (General) in: Fine, M.E., Meshii, M., Wayman, C.M., Nishiyama, Z. (Eds.), Martensitic Transformation. New York: Academic Press; 1978. p. 14–134.
  • Riedel H. Fracture at High Temperatures. Heidelberg: Springer-Verlag Berlin Heidelberg; 1987.
  • Auzoux Q, Allais L, Pineau A, et al. Reheat cracking in austenitic stainless steels. 14 European Conference on Fracture (ECF), France; 2002.
  • Dyson BF. Continuous cavity nucleation and creep fracture. Scripta Metallurgica. 1983;17(1):31–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.