1,792
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

The development of creep damage constitutive equations for high Cr steel

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 129-138 | Received 26 Oct 2019, Accepted 06 Jan 2020, Published online: 01 Feb 2020

References

  • Xu Q, Yang X, Lu ZY. On the development of creep damage constitutive equations: modified hyperbolic sine law for minimum creep strain rate and stress and creep fracture criterion based on cavity area fraction along grain boundaries. Mater High Temp. 2017;34(56):323–332.
  • Xu Q, Lu Z, Wang X. Damage modelling: the current state and the latest progress on the development of creep damage constitutive equations for high Cr steels. Mater High Temp. 2017;34(3):229–237. ISSN 0960-3409.
  • Xu Q, Lu Z. Modelling of creep deformation and fracture, a chapter in the book of “Strength of materials”. London: IntechOpen Ltd, 2019. Available from: https://www.intechopen.com/online-first/modeling-of-creep-deformation-and-creep-fracture
  • Xu Q, Tu JD, Lu Z. Development of the FE In-house procedure for creep damage simulation at grain boundary level. Metals. 2019;9(6):656.
  • Xu Q, Barrans S. The development of multi-axial creep damage constitutive equations for 0.5Cr0.5Mo0.25V ferritic steel at 590.DEG.C. JSME Int J. Ser. A. 2003;46(1):51–59. ISSN 13447912.
  • Xu Q. Creep damage constitutive equations for multi-axial states of stress for 0.5Cr0.5Mo0.25V ferritic steel at 590°C. Theor Appl Fract Mech. 2001;36(2):99–107. ISSN: 0167-8442.
  • Xu Q. The development of validation methodology of multi-axial creep damage constitutive equations and its application to 0.5Cr0.5Mo0.25V ferritic steel at 590°C. Nucl Eng Des. 2004;228(1–3):97–106. ISSN: 0029-5493.
  • Wang X, Wang X, Xu Q, et al. Investigation on the validity of creep damage mechanics for the life time prediction of T92 welded joint. Int J Damage Mech. July 2019. DOI:10.1177/1056789519860240.
  • Yin YF, Faulkner RG. Continuum damage mechanics modelling based on simulations of microstructural evolution kinetics. Mater Sci Technol. 2006;22:929–936.
  • Yadav SD, Sonderegger B, Stracey M, et al. Modelling the creep behavior of tempered martensitic steel based on a hybrid approach. Mater Sci Eng A662. 2016;330–341. DOI:10.1016/j.msea.2016.03.071.
  • Creep and rupture data of heat resistant steels, National Institute for Materials Science (NIMS). Available from: http://smds.nims.go.jp/creep/index_en.html, accessed May 2018
  • Renversade L, Ruoff H, Maile K, et al. Microtomographic assessment of damage in P91 and E911 steels after long- term creep. Int J Mater Res. 2014;105(7):621–627.
  • Schlacher C, Pelzmann T, Be´al C, et al. Investigation of creep damage in advanced martensitic chromium steel weldments using synchrotron X-ray micro-tomography and EBSD. Mater Sci Technol. 2015;31:516–521.
  • Xu QH. Development of advanced creep damage constitutive equations for low Cr alloy under long-term service [doctor thesis]. Huddersfield University; 2016. Available from: http://eprints.hud.ac.uk/27858/1/27_AAFinal_thesis_Qihua_Xu_2016_1.pdf
  • Panait CG. Metallurgical evolution and creep strength of 9–12% Cr heat resistant steels at 600°C and 650°C [doctor thesis]. Paris Tech Institut Des Sciences Et Technologies Paris Institute of Technology. Mines ParisTech; 2010. Available from: https://pastel.archives-ouvertes.fr/pastel-00579983
  • Sklenicka V, Kucharova K, Kudrman J, et al. Microstructure stability and creep behavior of advanced high chromium ferritic steels. Kovove Mater. 2005;43:20–33.
  • Sklenicka V, Kucharova K, Svoboda M, et al. Creep behaviour of advanced power plant steels after long-term isothermal ageing. Advances in materials technology for fossil power plants. Proceedings from the Sixth International Conference August 31–September 3. 2010; Santa Fe, New Mexico, USA.
  • Bailey RW. Creep of steel under simple and compound stress. Engineering. 1930;121:129–265.
  • Norton FH. The creep of steel at high temperature. New York (NY): McGraw-Hill Book; 1929.
  • Dyson BF. Use of CDM in materials modelling and component creep life prediction. J Press Vessels Technol. 2000;122:281–296.
  • Dyson B, McLean M. Microstructural evolution and its effects on the creep performance of high temperature alloys. In: Strang A, Cawley J, Greenwood GW, editors. Microstructural stability of creep resistant alloys for high temperature plant applications. 1997. p. 371–393, IOM Communications, London, United Kindom.
  • Riedel H. Fracture at high temperatures. Berlin: Springer Verlag; 1987.
  • Sket F, Dzieciol K, Borbély A, et al. Microtomographic investigation of damage in E911 steel after long term creep. Mat Sci Eng. 2010;528:103–111.
  • Xu Q, Zheng XM, Okpa M, et al. Poster: the development of creep damage constitution equations for high Cr alloys. Power Plant Operation & Flexibility. 2018 July 4 –6; London: IOM3.
  • Gupta C, Toda H, Mayr P, et al. 3D creep cavitation characteristics and residual life assessment in high temperature steels: a critical review. Mater Sci Technol. 2015;31:603–626.