480
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of microstructure evolution during creep of P91 steel using the electron backscatter diffraction technique

, &
Pages 158-165 | Received 08 Dec 2020, Accepted 28 Feb 2021, Published online: 09 Mar 2021

References

  • Erten DT, Nguyen TT, Jeong TM, et al. Creep deformation and rupture behaviour of service exposed P91 weld and base steel measured by miniature tensile creep testing. Mater High Temp. 2017;34(5–6):425–433.
  • Abe F, Ohba T, Miyazaki H, et al. Effect of W–Mo balance on long-term creep life of 9Cr steel. Mater High Temp. 2018;36(4):314–324.
  • Abe F. Creep rupture ductility of Gr.91 and Gr.92 at 550°C to 700°C. Mater High Temp. 2020;37(4):243–255.
  • Sonderegger B, Mitsche S, Cerjak H. Martensite laths in creep resistant martensitic 9–12% Cr steels-calculation and measurement of misorientations. Mater Charact. 2007;58(10):874–882.
  • Nie M, Zhang J, Huang F, et al. Microstructure evolution and life assessment of T92 steel during long-term creep. J Alloys Compd. 2014;588:348–356.
  • Rojas D, Garcia J, Prat O, et al. 9%Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650°C. Mater Sci Eng A. 2011;528(15):5164–5176.
  • Xiao B, Xu L, Zhao L, et al. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep. Mater Sci Eng A. 2017;707:466–477.
  • Peŝiĉka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels. Mater Sci Eng A. 2004;387–389:176–180.
  • Sauzay M. Modelling of the evolution of micro-grain misorientations during creep of tempered martensite ferritic steels. Mater Sci Eng A. 2009;510–511:74–80.
  • Luo H, Wang X, Liu Z, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel. J Mater Sci Technol. 2020;51:130–136.
  • Wang C, Wang M, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr Mater. 2008;58(6):492–495.
  • Zhang C, Wang Q, Ren J, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater Sci Eng A. 2012;534:339–346.
  • Reiter J, Bernhard C, Presslinger H. Austenite grain size in the continuous casting process: metallographic methods and evaluation. Mater Charact. 2008;59(6):737–746.
  • Sinha V, Gonzales M, Abrahams RA, et al. Correlative microscopy for quantification of prior austenite grain size in AF9628 steel. Mater Charact. 2020;159:109835.
  • Gyhlesten Back J, Engberg G. Investigation of parent austenite grains from martensite structure using EBSD in a wear resistant steel. Materials (Basel). 2017;10(5):453.
  • Mingard KP, Roebuck B, Bennett EG, et al. Comparison of EBSD and conventional methods of grain size measurement of hardmetals. Int J Refract Metals Hard Mater. 2009;27(2):213–223.
  • García De Andrés C, Bartolomé M, Capdevila C, et al. Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels. Mater Charact. 2001;46:389–398.
  • Cayron C, Artaud B, Briottet L. Reconstruction of parent grains from EBSD data. Mater Charact. 2006;57(4–5):386–401.
  • Krishna KVM, Tripathi P, Hiwarkar VD, et al. Automated reconstruction of pre-transformation microstructures in zirconium. Scr Mater. 2010;62(6):391–394.
  • Miyamoto G, Iwata N, Takayama N, et al. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Materialia. 2010;58(19):6393–6403.
  • Abbasi M, Nelson TW, Sorensen CD, et al. An approach to prior austenite reconstruction. Mater Charact. 2012;66:1–8.
  • Germain L, Gey N, Mercier R, et al. An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: application to steels. Acta Materialia. 2012;60(11):4551–4562.
  • Nyyssönen T, Peura P, Kuokkala V-T. Crystallography, morphology, and martensite transformation of prior austenite in intercritically annealed high-aluminum steel. Metall Mater Trans A. 2018;49(12):6426–6441.
  • Huang C-Y, Ni H-C, Yen H-W. New protocol for orientation reconstruction from martensite to austenite in steels. Materialia. 2020;9:100554.
  • Das CR, Albert SK, Bhaduri AK, et al. Characterization of ferrite in tempered martensite of modified 9Cr-1Mo steel using the electron backscattered diffraction technique. Metall Mater Trans A. 2011;42(13):3849–3852.
  • Berecz T, Jenei P, Csóré A, et al. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite. Mater Charact. 2016;113:117–124.
  • Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Materialia. 2003;51(6):1789–1799.
  • Karthikeyan T, Dash MK, Saroja S, et al. Estimation of martensite feature size in a low-carbon alloy steel by microtexture analysis of boundaries. Micron. 2015;68:77–90.
  • Wu X, Suo H, Ji Y, et al. Systematical analysis on the grain orientation evolution of pure nickel under plastic deformation by using in-situ EBSD. Mater Sci Eng A. 2020;792:139722.
  • Winkelmann A, Cios G, Tokarski T, et al. EBSD orientation analysis based on experimental Kikuchi reference patterns. Acta Materialia. 2020;188:376–385.
  • Ouyang S, Yang G, Qin H, et al. High temperature creep behavior and creep microstructure evolution of T6 state Mg–15Gd alloy. Mater Sci Eng A. 2020;780:139138.
  • Pešička J, Kužel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Materialia. 2003;51(16):4847–4862.
  • Bernier N, Bracke L, Malet L, et al. Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C-Mn high-strength steels. Metall Mater Trans A. 2014;45(13):5937–5955.
  • Abbasi M, Kim D-I, Nelson TW, et al. EBSD and reconstruction of pre-transformation microstructures, examples and complexities in steels. Mater Charact. 2014;95:219–231.
  • Kurdjumow G, Sachs G. Über den Mechanismus der Stahlhärtung. Zeitschrift für Physik. 1930;64(5):325–343.
  • Haiko O, Javaheri V, Valtonen K, et al. Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels. Wear. 2020;454–455:203336.
  • Gomes E, Kestens LAI. Fully automated orientation relationship calculation and prior austenite reconstruction by random walk clustering. IOP Conf Ser Mater Sci Eng. 2015;82:012059.
  • Kimura M, Yamaguchi K, Hayakawa M, et al. Microstructures of creep-fatigued 9–12% Cr ferritic heat-resisting steels. Int J Fatigue. 2006;28(3):300–308.
  • Xiao B, Xu L, Zhao L, et al. Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range. Mater Sci Eng A. 2019;743:280–293.
  • Germain L, Kratsch D, Salib M, et al. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps. Mater Charact. 2014;98:66–72.
  • Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Materialia. 2006;54(5):1279–1288.
  • Yadav SD, Kalácska S, Dománková M, et al. Evolution of the substructure of a novel 12% Cr steel under creep conditions. Mater Charact. 2016;115:23–31.
  • El Rayes MM, El-Danaf EA, Almajid AA. Characterization and correlation of mechanical, microstructural and ultrasonic properties of power plant steel. Mater Charact. 2015;100:120–134.
  • Mikami M. Effects of dislocation substructure on creep deformation behavior in 0.2%C-9%Cr steel. ISIJ Inter. 2016;56(10):1840–1846.
  • Humphreys FJ, Hatherly M. Chapter 4 - the structure and energy of grain boundaries. In: Humphreys FJ, Hatherly M, editors. Recrystallization and related annealing phenomena. 2nd ed. Oxford: Elsevier; 2004. p. 91–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.