102
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Strain and temperature contributions to structural evolution in a Re-containing 10% Cr-3% Co-3% W steel during creep

ORCID Icon, , & ORCID Icon
Pages 237-246 | Received 10 Jul 2020, Accepted 26 Apr 2021, Published online: 05 May 2021

References

  • Abe F, Kern T-U, Viswanathan R. Creep-resistant steels. Cambridge: Woodhead Publishing; 2008.
  • Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants – turbine materials: part II. J Mater Eng Perform. 2001;10:96–101.
  • Kostka A, Tak K-G, Hellmig RJ, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater. 2007;55:539–550.
  • Aghajani A, Somsen CH, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 2009;57:5093–5106.
  • Abe F. Creep behavior, deformation mechanisms and creep life of mod.9Cr-1Mo steel. Metall Mater Trans A. 2015;46:5610–5625.
  • Hald J, Korcakova L. Precipitate stability in creep resistant ferritic steels – experimental investigation and modelling. ISIJ Intern. 2003;43:420–427.
  • Fedoseeva A, Dudova N, Kaibyshev R. Effect of stresses on the structural changes in high-chromium steel upon creep. Phys Met Metallogr. 2017;118:591–600.
  • Fedoseeva A, Nikitin I, Dudova N, et al. Strain-induced Z-phase formation in a 9% Cr-3% Co martensitic steel during creep at elevated temperature. Mater Sci Eng A. 2018;724:29–36.
  • Fedoseeva A, Dudova N, Kaibyshev R, et al. Effect of tungsten on creep behavior of 9%Cr–3%Co martensitic steels. Metals. 2017;7:573.
  • Prat O, Garcia J, Rojas D, et al. The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels. Intermetallics. 2013;32:362–372.
  • Prat O, Garcia J, Rojas D, et al. Investigations on the growth kinetics of Laves phase precipitates in 12%Cr creep-resistant steels: experimental and DICTRA calculations. Acta Mater. 2010;58:6142–6153.
  • Abe F. Effect of fine precipitation and subsequent coarsening of Fe2W Laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metall Trans A. 2005;36A:321–332.
  • Abe F, Nakazawa S. The effect of tungsten on creep behavior of tempered martensitic 9Cr steels. Metall Trans A. 1992;23A:3025–3034.
  • Sawada K, Takeda M, Maruyama K, et al. Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Mater Sci Eng A. 1999;267:19–25.
  • Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels. Mater Sci Eng A. 2004;387–389:565–569.
  • Wang Y, Mayer K-H, Scholz A. Development of new 11%Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperature up to 650°C. Mater Sci Eng A. 2009;510–511:180–184.
  • Yan P, Zh. LH, Yu. B, et al. Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions. Mater Sci Eng A. 2013;588:22–28.
  • Hattestrand M, Andren H-O. Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel. Acta Mater. 2001;49:2123–2128.
  • Gh. H, Armaki RP, Maruyama CK, et al. Premature creep failure in strength enhanced high Cr ferritic steels caused by static recovery of tempered martensite lath structures. Mater Sci Eng A. 2010;527:6581–6588.
  • Gh. H, Armaki RP, Kano CS, et al. Strain-induced coarsening of nanoscale precipitates in strength enhanced high Cr ferritic steels. Mater Sci Eng A. 2012;532:373–380.
  • Taneike M, Abe F, Sawada K. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature. 2003;424:294–296.
  • Mishnev R, Dudova N, Fedoseeva A, et al. Microstructural aspects of superior creep resistance of a 10%Cr martensitic steel. Mater Sci Eng A. 2016;678:178–189.
  • Kaibyshev R, Mishnev R, Fedoseeva A, et al. The role of microstructure in creep strength of 9–12%Cr steels. Mat Sci Forum. 2016;879:36–41.
  • Dudova N, Mishnev R, Kaibyshev R. Creep behavior of a 10%Cr heat-resistant martensitic steel with low nitrogen and high boron contents at 650 °C. Mater Sci Eng A. 2019;766:138353.
  • Fedoseeva A, Nikitin I, Dudova N, et al. On effect of rhenium on mechanical properties of a high-Cr creep resistant steel. Mater Letters. 2019;269:81–84.
  • Fedoseeva A, Nikitin I, Dudova N, et al. Superior creep resistance of a high-Cr steel with Re additives. Mater Letters. 2020;262:127183.
  • Fedoseeva A, Nikitin I, Dudova N, et al. Effect of normalizing and tempering on structure and mechanical properties of advanced martensitic 10% Cr–3% Co–0.2% Re steel. AIP Conf Proc. 2017;1909:020049.
  • Fedoseeva A, Nikitin I, Tkachev E, et al. Effect of alloying on the nucleation and growth of laves phase in the 9–10%Cr-3%Co martensitic steels during creep. Metals. 2021;11:60.
  • Ishii R, Tsuda Y, Yamada M. High strength 12% Cr heat resisting steel for high temperature steam turbine blade. In: Nisbett EG, Melilli AS, editors. Steel forgings: second Volume, ASTM STP 1259. West Conshohocken: ASTM International; 1997. p. 317–329.
  • Ishii R, Tsuda Y, Yamada M, et al., The effect of tungsten on creep properties of high chromium steels for steam turbine, in: Conf. Proc. Advanced heat resistant steels for power generation, 27–29 April, 1998 San Sebastian, Spain, R. Viswanathan and J. Nutting (Eds.), The Institute of Materials, London, 1999, p. 277-287.
  • Kunieda T, Yamashita K, Murata Y, et al. Effect of rhenium of tungsten diffusivity in iron-chromium alloys. Mater Trans. 2006;47:2106–2108.
  • Hashizume R, Tamura O, Miki K, et al. Beneficial effect of Re on the long-term creep strength of high Cr ferritic heat resistant steels. Tetsu-to-Hagane. 2009;95:176–185.
  • Miyazaki M, Yamada M, Tsuda Y, et al., Advanced heat resistant steels for steam turbines. In: Conf. Proc. Advanced heat resistant steels for power generation, 27–29 April 1998, San Sebastian, Spain, R. Viswanathan, J. Nutting (Eds.), The Institute of Materials, London, 1999, pp. 574-585.
  • Wilshire B, Scharning P. Prediction of long term creep data for forged 1Cr-1Mo-0.25V steel. Mater Sci Technol. 2008;24:1–9.
  • Kimura K, Toda Y, Kushima H, et al. Creep strength of high chromium steel with ferrite matrix. Int J Press Vess Pip. 2010;87:282–288.
  • Yoshizawa M, Igarashi M, Moriguchi K, et al. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants. Mater Sci Eng A. 2009;510–511:162–168.
  • Kipelova A, Belyakov A, Kaibyshev R. The crystallography of M23C6 carbides in a martensitic 9% Cr steel after tempering, aging and creep. Phil Mag. 2013;93:2259–2268.
  • Fedorova I, Kipelova A, Belyakov A, et al. Microstructure evolution in an advanced 9 pct Cr martensitic steel during creep at 923 K (650 C). Metall Mater Trans A. 2013;44:128–135.
  • Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A. 2016;654:1–12.
  • Wagner C. Theorie der Alterung von Niederschlaegen durch Umlosen (Ostwald Reifung). Phys Chem Phys. 2010;65:581–591.
  • Lifshitz M, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19:35–50.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Second ed. Boston: Elsevier; 2004. p. 605.
  • Hornbogen E, Koster U, Haessner F. Recrystallization of metallic materials. Verlag: Stuttgart; 1978. p. 293.
  • Ardell AJ. On the coarsening of grain boundary precipitates. Acta Metall. 1972;20:601–609.
  • Nes E, Ryum N, Hunderi O. On the zener drag. Acta Metall. 1985;33:11–22.
  • Fedoseeva A, Nikitin I, Dudova N, et al. Nucleation of W-rich carbides and Laves phase in a Re-containing 10% Cr steel during creep at 650 °C. Mater Charact A. 2020;169:110651.
  • Fedoseeva A, Nikitin I, Dudova N, et al. Coarsening of Laves phase and creep behaviour of a Re-containing 10% Cr-3% Co-3% W steel. Mater Sci Eng A. 2021;812:141137.
  • Tkachev ES, Belyakov AN, Kaibyshev RO. The role of deformation in coarsening of M23C6 carbide particles in 9% Cr steel. Phys Met Metallogr. 2020;121:804–810.
  • Gottstein G. Physical foundations of materials science. Berlin: Springer; 2004. p. 502.
  • Fedoseeva A, Kozlov P, Dudko V, et al. Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C. Phys Met Metallogr. 2015;116:1047–1056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.