156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The degradation of oxide layer on Cr-containing steels in simulated atmospheres on carbothermic reduction

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-11 | Received 16 Mar 2021, Accepted 08 Oct 2021, Published online: 26 Oct 2021

References

  • Matthews C. Power boilers – remnant life assessment. In: Case Studies in Engineering Design. Butterworth-Heinemann; 1998. p. 142–156.
  • Speight JG. The refinery of the future. Andrew: Norwich; 2011.
  • Sandström R, Farooq M, Lundberg M. ‘Precipitation during long time ageing in the austenitic stainless steel 310ʹ. Mater High Temp. 2012;29(1):8–16.
  • Tawancy HM. On the comparative degradation of selected Cr2O3-forming alloys by high-temperature carburization with a case study involving 310 stainless steel. Eng Fail Anal. 2020;110:104402.
  • Jarvis WD. External corrosion in modern large boiler plant-part I. Anti-Corros. Methods Mater. 1962;9(1):9–13.
  • Toporov D. Theoretical aspects of burning pulverised fuel in atmosphere. In: Combustion of pulverised coal in a mixture of oxygen and recycled flue gas. Elsevier; 2014. p. 25–50.
  • Bartoňová L. Unburned carbon from coal combustion ash: an overview. Fuel Process Technol. 2015;134(3):136–158.
  • Hower JC, Groppo JG, Graham UM, et al. ‘Coal-derived unburned carbons in fly ash: a review’. Int J Coal Geol. 2017;179(4):11–27.
  • Das G, Chowdhury SG, Ray AK, et al. Failure of a super heater tube. Eng Fail Anal. 2002;9(5):563–570.
  • Simms NJ Environmental degradation of boiler components. In: Oakey JE, editor. Power plant life management and performance improvement, 1st. Cornwall UK: Woodhead Publishing Ltd; 2011. Energy: Number 23, 145–179.
  • Movahedi-Rad A, Plasseyed SS, Attarian M. Failure analysis of superheater tube. Eng Fail Anal. 2015;48:94–104.
  • Li J, Zhuang X, Monfort E, et al. ‘Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: implications of physical, mechanical properties and environmental features’. Constr Build Mater. 2018;175:64–76.
  • Cruz NC, Silva FC, Tarelho LAC, et al. Critical review of key variables affecting potential recycling applications of ash produced at large-scale biomass combustion plants. ResouConserv Recycl. 2019;150:104427.
  • Babich A, Senk D, Gudenau HW. Ironmaking. 1st ed. Düsseldorf: Stahleisen; 2016.
  • Pierson: HO. Handbook of refractory carbides and nitrides. Park Ridge N.J.: Noyes Publications; 1996.
  • Wolfe D, Eden T. Cold spray particle deposition for improved wear resistance. In: The cold spray materials deposition process. Woodhead Publishing; 2007. p. 264–301.
  • Zikin A, Hussainova I, Katsich C, et al. Advanced chromium carbide-based hardfacings. Surf Coat Technol. 2012;206(19–20):4270–4278.
  • Tungtrongpairoj J, Thongyoug P, Saranyachot P, et al. High temperature degradation of thermal oxides on AISI 304 stainless steels by carbon. KEM. 2020;856:21–28.
  • Laranjo RD. Thermodynamic analysis in the production of chromium carbide from the reduction of chromium oxide with methane-containing gas. Int. J. Eng. Technol. 2018;4(2):227–232.
  • Ebrahimi-Kahrizsangi R, Zadeh HM, Nemati V. Synthesis of chromium carbide by reduction of chromium oxide with methane. Int J Refract Metals Hard Mater. 2010;28(3):412–415.
  • Krupp U, Trindade VB, Schmidt P, et al. Oxidation mechanisms of Cr-containing steels and Ni-base alloys at high temperatures Part II: computer-based simulation. Mater Corros. 2006;57(3):263–268.
  • Gond D, Chawla V, Puri D, et al. Oxidation studies of T-91 and T-22 boiler steels in air at 900°C. JMMCE. 2010;09(8):749–761.
  • Zeng Z, Natesan K, Grimsditch M. Effect of oxide scale compositions on metal dusting corrosion of Fe-based alloys. CORROSION. 2004;60(7):632–642.
  • Rufner J, Gannon P, White P, et al. Oxidation behavior of stainless steel 430 and 441 at 800°C in single (air/air) and dual atmosphere (air/hydrogen) exposures. Int J Hydrogen Energy. 2008;33(4):1392–1398.
  • Promdirek P, Lothongkum G, Chandra-ambhorn S, et al. Oxidation kinetics of AISI 441 ferritic stainless steel at high temperatures in CO2 atmosphere. Oxid Met. 2014;81(3–4):315–329.
  • Chandra-ambhorn S, Saranyachot P, Thublaor T. High temperature oxidation behaviour of Fe–15.7 wt.% Cr–8.5 wt.% Mn in oxygen without and with water vapour at 700 °C. Corros Sci. 2019;148:39–47.
  • Pinder LW, Dawson K, Tatlock GJ, Mahi FT. High temperature corrosion of low alloy steels in reference module. In: materials science and materials engineering. Elsevier; 2017. p. 165.
  • Anacleto N, Ostrovski O. Solid-state reduction of chromium oxide by methane-containing gas. Metall Mat Trans B. 2004;35(4):609–615.
  • Takano C, Zambrano AP, Nogueira AEA, et al. Chromites reduction reaction mechanisms in carbon–chromites composite agglomerates at 1773 K. ISIJ Int. 2007;47(11):1585–1589.
  • Shibata E, Egawa S, Nakamura T. Reduction behavior of chromium oxide in molten slag using aluminum, ferrosilicon and graphite. ISIJ Int. 2002;42(6):609–613.
  • Apaydin F, Atasoy A, Yildiz K. Effect of mechanical activation on carbothermal reduction of chromite with graphite. Canad Metallurgi Quarter. 2011;50(2):113–118.
  • Zhang Y-L, Guo W-M, Liu Y, et al. Reduction mechanism of Fe2O3-Cr2O3-NiO system by carbon. J Cent South Univ. 2016;23(6):1318–1325.
  • Mori T, Yang J, Kuwabara M. Mechanism of carbothermic reduction of chromium oxide. ISIJ Int. 2007;47(10):1387–1393.
  • Thongyoug P, Tungtrongpairoj J. Carbothermic reduction of the waste chromium oxide rods from thermal spray processes. IOP Conf Ser Mater Sci Eng. 2020;965:12024.
  • Anthonysamy S, Ananthasivan K, Kaliappan I, et al. Gibbs energies of formation of chromium carbides. MMTA. 1996;27(7):1919–1924.
  • Chakraborty D, Ranganathan S, Sinha SN. Investigations on the carbothermic reduction of chromite ores. Metall Mater Trans B. 2005;36(4):437–444.
  • Li H, Chen W. High temperature carburization behaviour of Mn–Cr–O spinel oxides with varied concentrations of manganese. Corros Sci. 2011;53(6):2097–2105.
  • Kubaschewski O, Alcock CB. Metallurgical thermochemistry. Vol. 24. 5th ed. Oxford: Pergamon; 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.