544
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Cyclic plasticity models and fatigue criteria for exhaust manifold life assessment in the context of limited material data available

, , &
Pages 68-85 | Received 10 Sep 2021, Accepted 29 Nov 2021, Published online: 21 Dec 2021

References

  • Rathnaraj JD. Thermomechanical fatigue analysis of stainless steel exhaust manifolds. Int J Adv Therm Sci Eng. 2012;3:65–68.
  • Hazime RM, Dropps SH, Anderson DH, et al. Transient non-linear FEA and TMF life estimates of cast exhaust manifolds. SAE 2003 World Congress & Exhibition. Detroit, 2003, 2003–01–0918.
  • Bartošák M, Španiel M, Doubrava K. Thermo-mechanical fatigue of SiMo 4.06 turbocharger turbine housing: damage operator approach. Eng Failure Anal. 2019;105:736–755.
  • Liu Y, Miller L, Chen J. Thermo-Mechanical Fatigue (TMF) virtual analysis for exhaust manifold durability using FEMFAT HEAT. FEMFAT User Meeting. USA, 2014.
  • Charkaluk E, Bignonnet A, Constantinescu A, et al. Fatigue design of structures under thermomechanical loadings. Fatigue Fract Eng Mater Struct. 2002;25:1199–1206.
  • Seifert T, Hazime R, Dropps S. TMF life prediction of high temperature components made of cast iron HiSiMo: part II: multiaxial implementation and component assessment. SAE Int J Mater Manf. 2014;7:421–431.
  • Liu Y, Chen Y-H, Sawkar N, et al. A thermomechanical fatigue analysis on a ductile cast iron exhaust manifold. SAE Int J Mater Manf. 2018;11:517–528.
  • Mohrmann R, Seifert T, Willeke W, et al. Fatigue life simulation for optimized exhaust manifold geometry. SAE 2006 World Congress & Exhibition. Detroit, 2006, 2006-01-1249.
  • Seifert T, Riedel H. Fatigue life prediction of high temperature components in combustion engines and exhaust systems. Proceedings of the 4th EASC 2009 European Automotive Simulation Conference. Munich, 2009, p.313–324.
  • Hazime R, Seifert T, Chang CC, et al. A mechanism-based thermomechanical fatigue life assessment method for high temperature engine components with gradient effect approximation. WCX SAE World Congress Experience. Detroit, 2019, 2019-01-0536.
  • Chaboche J-L, Dang-Van K, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. Proceedings of the Fifth International Conference on Structural Mechanics in Reactor Technology. Berlin, 1979, p. 1–10.
  • Seifert T. Ein komplexes LCF-Versuchsprogramm zur schnellen und günstigen Werkstoffparameteridentifizierung. Tagungsband Werkstoffprüfung, 2006, p. 409–414.
  • Prager W. A new method of analyzing stresses and strains in work-hardening plastic solids. J Appl Mech. 1956 23 ;493–496.
  • Cardoso A, Andreatta EC. Thermomechanical analysis of diesel engine exhaust manifold. 25th SAE BRASIL International Congress and Display. Sao Paulo, 2016, 2016-36-0258.
  • Laengler F, Mao T, Scholz A. Investigation of application-specific phenomena to improve the lifetime assessment for turbine housings of turbochargers. Procedia Eng. 2011;10:1163–1169.
  • Taira S. Relationship between thermal fatigue and low-cycle fatigue at elevated temperature. Fatigue at Elevated Temperatures, 1973, p. 80–101.
  • Santacreu P-O, Bucher L, Koster A, et al. Thermomechanical fatigue of stainless steels for automotive exhaust systems. Rev Met Paris. 2006;103:37–42.
  • Neu RW, Sehitoglu H. Thermomechanical fatigue, oxidation, and creep: part II. Life prediction. Metall Trans A. 1989;20:1769–1783.
  • Manson S, Halford G, Hirschberg M. Creep-fatigue analysis by strain range partitioning. Symposium on Design for Elevated Temperature Environment. San Francisco, 1971, p. 12–28.
  • Yogesh K, Ananthesha, Mahendra Babu NC. Assessment of thermo-mechanical fatigue performance of an exhaust manifold through simulation. Indian J Sci Technol. 2017;10:1–6.
  • Bignonnet A, Charkaluk E. Thermomechanical fatigue in the automotive industry. Eur Struct Integr Soc. 2002;29:319–330.
  • Ammar K, Beranger M, Fiard J, et al. Anisothermal energetic approach to predict thermomechanical fatigue lifetime on exhault manifold. http://matperso.mines-paristech.fr/Donnees/data12/1227-Article-Anisothermal-energetic-approach.pdf, 2013. Accessed 12 January 2021.
  • Bartošák M, Novotný C, Španiel M, et al. Life assessment of SiMo 4.06 cast iron under LCF and TMF loading conditions. Mater High Temp. 2019;36:285–295.
  • Bartošák M, Španiel M, Doubrava K. Unified viscoplasticity modelling for a SiMo 4.06 cast iron under isothermal low-cycle fatigue-creep and thermomechanical fatigue loading conditions. Int J Fatigue. 2020;136:105566.
  • Španiel M, Bartošák M. Brief manual of scripts for thermo-mechanical fatigue predictions. http://mechanika.fs.cvut.cz/content/files/software/tz_script.pdf, 2015. Accessed 2 February 2021.
  • Schicker J, Sievert R, Fedelich B, et al. TMF Lebensdauerberechnung ATL-Heißteile. Forschungsvereinigung Verbrennungskraftmaschinen e.V., 2010.
  • Pevec M, Oder G, Potrč I, et al. Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs. Eng Failure Anal. 2014;42:221–230.
  • Material information - Walzengiesserei Coswig. https://www.walze-coswig.com/hand-mould-casting/material-information, 2020. Accessed 10 March 2021.
  • Suman S, Biswas P, Sridhar PVSS. Numerical prediction of welding distortion in submerged arc welded butt and fillet joints. Proceedings of International Conference of Design and Manufacturing. Kanchipuram, 2016.
  • Cailletaud G, Quilici S, Azzouz F, et al. A dangerous use of the fading memory term for non linear kinematic models at variable temperature. Eur J Mech A Solids. 2015;54:24–29.
  • Rekun I, Seifert T, Jörg R. Determination of stable and robust material properties for the assessment of thermomechanically loaded components of rocket engines with viscoplastic equations. 14th European Conference on Spacecraft Structures, Materials and Environmental Testing. Toulouse, 2016.
  • Peč M, Šebek F, Zapletal J, et al. Automated calibration of advanced cyclic plasticity model parameters with sensitivity analysis for aluminium alloy 2024-T351. Adv Mech Eng. 2019;11:1–14.
  • Peč M, Šebek F, Petruška J. Basic kinematic hardening rules applied to 304 stainless steel and the advantage of parameters evolution. Mech Solids. 2019;54:122–129.
  • Basquin O. The exponential law of endurance tests. Proceedings of the Thirteenth Annual Meeting. Atlantic City, 1910, p. 625–630.
  • Manson SS. Behavior of materials under conditions of thermal stress. National Advisory Committee for Aeronautics, 1954, p. 317–350.
  • Coffin LF. A study of the effects of cyclic thermal stresses on a ductile metal. Trans ASME. 1954 76 ;931–950.
  • Manson SS, Hirschberg MH. Fatigue behavior in strain cycling in the low and intermediate-cycle range. 10th Sagamore Army Research Conference: Fatigue—An Interdisciplinary Approach. New York, 1963, p. 13–16.
  • Morrow J. Cyclic plastic strain energy and fatigue of metals. Proceedings of Symposium on Internal Friction, Damping and Cyclic Plasticity. Chicago, 1965, p. 45–87.
  • Stephens RI, Fatemi A, Stephens RR, et al. Metal Fatigue in Engineering. second ed. New York: John Wiley & Sons; 2001.
  • Garud YS. A new approach to the evaluation of fatigue under multiaxial loadings. J Eng Mater Technol. 1981;103:118–125.
  • Lefebvre D, Neale KW, Ellyin F. A criterion for low-cycle fatigue failure under biaxial states of stress. J Eng Mater Technol. 1981;103:1–6.
  • Halford GR. The energy required for fatigue. J Mater. 1966;1:3–18.
  • Hazime R, Seifert T, Kessens J, et al. Lifetime assessment of cylinder heads for efficient heavy duty engines part I: a discussion on thermomechanical and high-cycle fatigue as well as thermophysical properties of lamellar graphite cast iron GJL250 and vermicular graphite cast iron GJV450. SAE Int J Engines. 2017;10:359–365.
  • Jääskeläinen H. Diesel Exhaust Gas. https://dieselnet.com/tech/diesel_exh.php#flow, 2020. Accessed 1 April 2021.
  • Heuer T, Engels B, Wollscheid P. Thermomechanical analysis of a turbocharger based on conjugate heat transfer. Proceedings of the ASME Turbo Expo. Reno, 2005, , p. 829–836.
  • ABAQUS Example Problems Guide. Chapter 5.1.3 Exhaust manifold assemblage, 2016.
  • Lederer G, Charkaluk E, Verger L, et al. Numerical lifetime assessment of engine parts submitted to thermomechanical fatigue, application to exhaust manifold design. SAE 2000 World Congress. Detroit, 2000, 2000-01-0789.
  • Barrett PR, Hassan T. A unified constitutive model in simulating creep strains in addition to fatigue responses of Haynes 230. Int J Solids Struct. 2020;185–186:394–409.
  • Delprete C, Sesana R, Vercelli A. Multiaxial damage assessment and life estimation: application to an automotive exhaust manifold. Procedia Eng. 2010;2:725–734.
  • Sahoo DK, Thiya R. Coupled CFD–FE analysis for the exhaust manifold to reduce stress of a direct injection-diesel engine. Int J Ambient Energy. 2019;40:361–366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.