1,622
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Modelling for Creep Cavitation Damage and Life of Three Metallic Materials

, & ORCID Icon
Pages 86-96 | Received 12 Mar 2021, Accepted 22 Dec 2021, Published online: 07 Jan 2022

References

  • Jovanovic A. Risk-based inspection and maintenance in power and process plants in Europe. Nucl Eng Des. 2003;226:165–182.
  • Di Gianfrancesco A. In: Di Gianfrancesco A, ed. The fossil fuel power plants technology, materials for ultra-supercritical and advanced ultra-supercritical power plants. Oxford, UK: Elsevier/Woodhead Publishing; 2017. p. 1–47.
  • Webster G. Trends in high temperature structural integrity assessment. J ASTM Int. 2005;3(2):1–18.
  • Spindler M, Payten W, Saxena A. Advanced ductility exhaustion methods for the calculation of creep damage during creep-fatigue cycling. J ASTM Int. 2011;8(7):1–19.
  • Bendick W, Cipolla L, Gabrel J, et al. New ECCC assessment of creep rupture strength for steel grade X10CrMoVNb9-1 (Grade 91. Int J Press Vessels Pip. 2010;87:304–309.
  • Holmström S, Pohja R, Payten W. Creep-fatigue interaction models for grade 91 steel, ASTM Materials Performance and Characterization . ASTM Mater Perform Charact. 2014;3:156–181.
  • Holmström S, De Haan F, Föhrer U, et al. Engineering models for softening and relaxation of Gr. 91 steel in creep-fatigue conditions, International Journal of Structural Integrity . Int J Struct Integr. 2017;8:670–682.
  • Auerkari P, Yli-Olli S, Penttilä S, et al. Performance of high-temperature materials for efficient power plants: the waterside challenge, ASME Journal of Nuclear Engineering and Radiation Science . ASME J Nucl Eng Radiat Sci. 2016;2(3):031009.
  • Tabuchi M, Takahashi Y. Evaluation of creep strength reduction factors for welded joints of modified 9Cr-1Mo steel (P91), Proceedings of PVP2006 ASME Pressure Vessels and Piping Division Conference,July 23–27, Vancouver, BC, Canada, (2006), . Doi:https://doi.org/10.1115/PVP2006-ICPVT-11-93350.
  • Auerkari P, Salonen J, Holmström S, et al. Creep damage and long-term life modelling of an X20 steam line component. Eng Fail Anal. 2013;35:508–515.
  • Seliger P, Gampe U. Life assessment of creep exposed components, new challenges for condition monitoring of 9Cr steels, Power Plant: Operation Maintenance and Materials Issues . Power Plant: Operation Maintenance and Materials Issues. 2002;1(2):1–14.
  • Pohja R, Holmström S, Auerkari P, et al. Predicted life of P91 steel for cyclic high temperature service. Mater High Temp. 2017;34:301–310.
  • Parker J. Component relevant creep damage in tempered martensitic 9 to 12%Cr steels. Proceedings of the 7th International Conference on Advances in Materials Technology for Fossil Power Plant, EPRI/ASM, October 11-14, 2016 ,Albufeira, Algarve, Portugal, (2016) .
  • Siefert J, Parker J. Evaluation of the creep cavitation behaviour in Grade 91 steels. Int J Press Vessels Pip. 2016;138:31–44.
  • Krein R, Klenk A, Schubert J. Weld strength reduction in modern tempered martensitic 9% Chromium creep resistant steels, 4th International ECCC Creep & Fracture Conference, September 10 - 14, 2017, Düsseldorf, Germany, (2017).
  • Masuyama F. Low-alloyed steel grades for boilers in ultra-supercritical power plants. Materials for ultrasupercritical and A-USC power plants, A. Di Gianfrancesco, Elsevier/Woodhead Publishing 2017, 53–76.
  • Hald J. In: Di Gianfrancesco A, Ed. High-alloyed martensitic steels for boilers in ultra-supercritical power plants, materials for ultra-supercritical and A-USC power plants. Oxford, UK: Elsevier/Woodhead Publishing; 2017. p. 77–97.
  • Goyal S, Laha K, Das C, et al. Finite element analysis of effect of triaxial state of stress on creep cavitation and rupture behaviour of 2.25Cr–1Mo steel. Int J Mech Sci. 2013;75:233–243.
  • Neubauer B, Wedel U. Restlife estimation of creeping components by means of replicas, ASME International Conference on Advances in Life Prediction Methods, ed. Woodford DA, Whitehead JR, New York/ASME 1983, 307–314.
  • Boettner R, Robertson W. A study of the growth of voids in copper during the creep process by measurement of the accompanying change in density, Transactions of the Metallurgical Society of AIME . Trans Metall Soc AIME. 1961;221:613–622R .
  • Wu R, Sandström R. Creep cavity nucleation and growth in 12Cr-Mo-V steel. Mater Sci Technol. 1995;11:579–588.
  • Wu R, Sandström R, Storesund J. Creep strain behaviour in a 12%CrMoV steel. Mater High Temp. 1994;12:277–283.
  • Walker N. Type IV creep cavitation in low alloy ferritic steel weldments, Ph.D. Thesis, University of Bristol, Engineering Materials and Structural Integrity Group, Department of Mechanical Engineering, 1997.
  • Holdsworth S, Merckling G. ECCC developments in the assessment of creep-rupture data, Proceedings of sixth international Charles Parsons Conference on engineering issues in turbine machinery, power plant and renewables, Trinity College, Dublin, 2003 Sept 16–18.
  • Holdsworth S. Developments in the assessment of creep strain and ductility data. Mater High Temp. 2004;21:125–132.
  • Rantala J, Salonen J, Auerkari P, et al., Long-term integrity of copper overpack –Final report 2010, Research report VTT-R-01581-11, 2011, 28 p.
  • Pohja R, Tuurna S, Hakala T, et al., Life assessment and maintenance of welded piping operating at high temperatures 2019, Baltica XI: International Conference on Life Management and Maintenance for Power Plants, VTT Technical Research Centre of Finland, Helsinki, Finland - Stockholm, Sweden, (2019).
  • Evans H. Mechanics of creep fracture, Elsevier Applied Science Publishers Ltd. 1984, 25–161.
  • Riedel H. Fracture at High Temperatures. Berlin, Germany: Springer-Verlag; 1987. p. 67–129.
  • Hull D, Rimmer D. The growth of grain-boundary voids under stress, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics . Philos Mag: J Theor Appl Phys. 1959;4:673–687.
  • Dzieciol K, Borbély A, Sket F, et al. Void growth in copper during high-temperature power-law creep. Acta Materialia. 2011;59:671–677.
  • Greenwood G. Note on the formation of voids during creep, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics . Philos Mag: J Theor Appl Phys. 1963;8:707–709.
  • Gooch D. Creep fracture of 12Cr-Mo-V steel. Metal Sci. 1982;16:79–89.
  • Eggeler G, Earthman JC, Nilsvang N, et al. Microstructural study of creep rupture in a 12% chromium ferritic steel. Acta Metall. 1989;37:49–60.
  • Storesund J, Borggreen K, Zang W. Creep behaviour and lifetime of large welds in X 20 CrMoV 12 1 - results based on simulation and inspection. Int J Press Vessels Pip. 2006;83:875–883.
  • Auerkari P, Holmström S, Salonen J, et al., Evaluation of creep damage from replica inspection results, Nordtest Project No. 1306-96, VTT VALB 211, 1997.
  • Auerkari P, Holmström S, Veivo J, et al. Creep damage and expected creep life for welded 9–11% Cr steels. Int J Press Vessels Pip. 2007;84(1–2):69–74.
  • Gooch D, Shammas M, Coleman M, et al., Creep cavitation assessment using field replication, Proceedings of an International Conference on Fossil Power Plant Rehabilitation - Trends in Life Management and Technology, 27 February-1 March 1989, Cincinnati, Ohio, USA (1989).
  • Shammas M. Predicting the remanent life of 1Cr½Mo coarse-grained heat affected zone material by quantitative cavitation measurement, central electricity generation Board Report TPRD/L/3199/R87 (1987).
  • Anderson P, Rice J. Constrained creep cavitation of grain boundary facets. Acta Metall. 1985;33:409–422.
  • EN 13445-3. Unfired pressure vessels. Part 3: design, Annex R. In: Coefficients for creep-rupture model equations for extrapolation of creep rupture strength. Brussels: CEN; 2021. p. 837–843.
  • EN 12952-4. Water-tube boilers and auxiliary installations. In: Part 4: in-service boiler life expectancy calculations. Brussels: CEN; 2011. p. 21.
  • VGB-S-517-00-2014-11. VGB standard guidelines for rating the microstructural composition and creep rupture damage of creep-resistant steel for high-pressure pipelines and boiler components and their weld connections. VGB Powertech, Essen. 71 p + app.
  • Xu Q, Yang X, Lu Z. On the development of creep damage constitutive equations: a modified hyperbolic sine law for minimum creep strain rate and stress and creep fracture criteria based on cavity area fraction along grain boundaries. Mater High Temp. 2017;34(5–6):323–332.
  • Zheng X, Xu Q, Lu Z, et al. The development of creep damage constitutive equations for high Cr steel. Mater High Temp. 2020;37(2):129–138.
  • Zheng X, Yang X, Lu Z, et al. The method for the determination of creep cavitation model based on cavity histogram. Mater High Temp. 2021;38(5):383–390.
  • Gaudig W. Engineering approach to modelling the multiaxial creep and damage behaviour of compact tension geometry specimens of a 12 Cr steel at 550°C. Steel Res. 2000;71:264–270.
  • Woodford D. A parametric approach to creep damage, Metal Science Journal . Met Sci J. 1969;3:50–53.
  • Woodford D. Density changes during creep in nickel, Metal Science Journal . Met Sci J. 1969;3:234–240.
  • Needham N, Gladman T. Nucleation and growth of creep cavities in a Type 347 steel. Metal Sci. 1980;14:64–72.
  • Frost H, Ashby M. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. New York, USA: Elsevier Science Limited; 1982.
  • Abe F. Creep behavior, deformation mechanisms and creep life of Mod.9Cr-1Mo steel. Metall Mater Trans A. 2015;46:5610–5624.
  • ASM Handbook. Properties and selection: irons, steels, and high-performance alloys. ASM Int. 1990;1.
  • Maile K, Purper H, Wilson B, et al. A new monitoring system for piping systems in fossil fired power plants. Int J Press Vessels Pip. 1996;66:305–317.
  • Sket F, Dzieciol K, Borbély A, et al. Microtomographic investigation of damage in E911 steel after long term creep. Mater Sci Eng A. 2010;528:103–111.
  • Hald J. Microstructure and long-term creep properties of 9–12% Cr steels. Int J Press Vessels Pip. 2008;85:30–37.
  • Kassner M. Fundamentals of creep in metals and alloys. Amsterdam, The Netherlands: Elsevier Science; 2008.
  • Jazaeri H, Bouchard P, Hutchings M, et al. An investigation into creep cavity development in 316H stainless steel. Metals. 2019;9(318):1–17.