748
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the environmental impacts and economical study of Solar Salt in CSP-parabolic trough technology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 331-337 | Received 01 Feb 2023, Accepted 15 Feb 2023, Published online: 06 Mar 2023

References

  • Abbas R, Montes M, Rovira A, et al. Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Solar Energy. 2016;124(p):198–215.
  • Blanco MJ, Miller S. Introduction to concentrating solar thermal (CST) technologies, in advances in concentrating solar thermal Research and Technology E. Ltd Editor. CSIRO Newcastle, NSW Australia; 2017. p. 3–25.
  • Batuecas E, Mayo C, Díaz R, et al. Life cycle assessment of heat transfer fluids in parabolic trough concentrating solar power technology. Sol Energy Mater Sol Cells. 2017;171:91–97.
  • Chang ZS, Li X, Xu C, et al. The Design and numerical study of a 2MWh molten salt thermocline tank. Energy Procedia. 2015;69:779–789.
  • Yu-Ting W, Shan-Wei L, Ya-Xuan X, et al. Experimental study on the heat transfer characteristics of a low melting point salt in a parabolic trough solar collector system. Appl Therm Eng. 2015;89:748–754.
  • Wu Y-T, Li Y, Ren N, et al. Experimental study on the thermal stability of a new molten salt with a low melting point for thermal energy storage applications. Sol Energy Mater Sol Cells. 2018;176:181–189.
  • Wu Y-T, Li Y, Lu Y-W, et al. Novel low melting point binary nitrates for thermal energy storage applications. Sol Energy Mater Sol Cells. 2017;164:114–121.
  • Wang T, Mantha D, Reddy RG. Novel low melting point quaternary eutectic system for solar thermal energy storage. Appl Energy. 2013;102:1422–1429.
  • Ren N, Wu Y-T, Ma C-F, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point. Sol Energy Mater Sol Cells. 2014;127:6–13.
  • Raade JW, Padowitz D. Development of molten salt heat transfer fluid with low melting point and high thermal stability. J. Sol. Energy Eng. 2011; 133(3): 6.
  • Pfleger N, Braun M, Eck M, et al. Assessment of novel inorganic storage medium with low melting point. Energy Procedia. 2015;69:988–996.
  • Ma Z, Wu Y, Ren N. Heat transfer and storage medium containing low melting point mixed molten salt in European Patent Office. 2015. China.
  • Vignarooban K, Xinhai X, Arvay A, et al. Heat transfer fluids for concentrating solar power systems – a review. Appl Energy. 2015;146:383–396.
  • Thakare KA. Review on latent heat storage and problems associated with phase change materials. Int J Res Eng Technol. 2015;04(10).
  • Mohamed SA, Al-Sulaiman FA, Ibrahim NI. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sust Energ Rev. 2017;70:1072–1089.
  • Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sust Energ Rev. 2012;16(4):2118–2132.
  • Fernández AG, Galleguillos H, Fuentealba E, et al. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim. 2015;122(1):3–9.
  • Kirst W, Nagle W, Castner J. A new heat transfer medium for high temperatures. Trans American Institute Chemical Engineers. 1940;36:371–394.
  • Jin Y, An Xuehui CJ. Su Tao, Zhang Peng, Li Zhong. Accurate viscosity measurement of nitrates/nitrites salts for concentrated solar power. Solar Energy, 2016;137:385–392.
  • Rogers J, Janz GJ. Melting-crystallization and premelting properties of NaNO3-KNO3 enthalpies and heat capacities. Vol. 27. 1982.
  • Ming-Chang L, Chien-Hsun H. Specific heat capacity of molten salt-based alumina nanofluid. Nanoscale Res Lett. 2013;8(292):1–7.
  • Bonk A, Sau S, Uranga N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog Energy Combust Sci. 2018;67:69–87.
  • Serrano-López R, Fradera J, Cuesta-López S. Molten salts database for energy applications. Chem Eng Process Process Intensif. 2013;73:87–102.
  • Bashirnezhad K, Bazri SS, Mohammad R, et al. Viscosity of nanofluids: a review of recent experimental studies. Int J Heat Mass Transf. 2016;73(p):114–123.
  • Janz GJ, Krebs U, Siegenthaler HF. Molten salts: volume 3, nitrates, nitrites, and mixtures. electrical conductance, density, viscosity, and surface tension data. J Phys Chem Refer Data. 1972; 1(3): 581.
  • Batuecas E, Mayo C, Díaz R, et al. Life cycle assessment of heat transfer fluids in parabolic trough concentrating solar power technology. Sol Energy Mater Sol Cells. 2017; 171: 91–97. 09270248.
  • Ehtiwesh I, Coelho M, Sousa A. Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew Sust Energ Rev. 2016;56(56):145–155. 13640321
  • Mayo C, Batuecas E, Díaz R, et al. Comparative environmental assessment of two materials suited to central tower CSP technology. Solar Energy. 2018;162:178–186. 0038–092X.
  • Oró E, Gil A, de Gracia A, et al. Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renewable Energy. 2012; 44: 166–173. 09601481.
  • Clifford KH. Concentrating solar power and thermal energy storage.Albuquerque. New Mexico: Sandia National Laboratories. Disponible en. https://www.osti.gov
  • Ruiz-Cabañas FJ, Prieto C, Madina V, et al. Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts. Sol Energy Mater Sol Cells. 2017;163:134–147. 09270248
  • Chen YY, Zhao CY. Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage. Solar Energy. 2017; 146: 172–179. 0038092X.
  • Parrado C, Marzo A, Fuentealba E, et al. LCOE improvement using new molten salts for thermal energy storage in CSP plants. Renew Sust Energ Rev. 2016; 2050(57): 505–514. 1364-0321.
  • Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sust Energ Rev. 2012;16(4):2118–2132. 13640321
  • Herrmann U, Kelly B, Price H. Two-tank molten salt storage for trough solar power plants. Energy. 2004;29(5–6):883–893. 03605442
  • CSP-Plaza. salt melting of the ashalim plot A CSP plant starts. Disponible en: http://en.cspplaza.com/salt-melting-of-the-ashalim-plot-a-csp-plant-starts/Consulta:26-5-2019.