151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crack driving forces under creep conditions in presence of material inhomogeneity

ORCID Icon &
Pages 234-243 | Received 03 Apr 2023, Accepted 14 Nov 2023, Published online: 25 Nov 2023

References

  • Lindqvist S, Sarikka T, Ahonen M, et al. The effect of crack path on tearing resistance of a narrow-gap alloy 52 dissimilar metal weld. Eng Fract Mech. 2018;201:130–143. doi: 10.1016/j.engfracmech.2018.05.043
  • Tiwari A. Effect of material inhomogeneity under creep and plastic to creep transition of cracks. Procedia Struct Integr. 2022;39:290–300.
  • Ainsworth RA. Characterisation of creep fracture at interfaces in weldments. Appl Fract Mech. 1997;143–153.
  • Budden PJ, Curbishley I. Assessment of creep crack growth in dissimilar metal welds. Nucl Eng Des. 2000;197(1–2):13–23. doi: 10.1016/S0029-5493(99)00255-1
  • Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces: part I—small scale yielding. ASME J Appl Mech. 1988 June 1;55(2):299–316. DOI:10.1115/1.3173676. June 1988.
  • Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces: part II—structure of small-scale yielding fields. ASME J Appl Mech. 1989 December 1;56(4):763–779. DOI:10.1115/1.3176170. December 1989.
  • Shih CF, Asaro RJ, O’Dowd NP. Elastic-plastic analysis of cracks on bimaterial interfaces: part III—large-Scale yielding. ASME J Appl Mech. 1991 June 1;58(2):450–463. DOI:10.1115/1.2897206. June 1991.
  • Li GB, Xue H, Bi YQ, et al., 2020. Study on the rate of elastic-plastic crack propagation of heterogeneous metal welded joints in nuclear power. In IOP Conference Series: Materials Science and Engineering (Vol. 751, No. 1, p. 012063). IOP Publishing.
  • Wang HT, Wang GZ, Xuan FZ, et al. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems. Mater Sci Eng A. 2013;568:108–117. doi: 10.1016/j.msea.2013.01.037
  • Kolednik O, Sch¨ongrundner R, Fischer FD. A new view on J-integrals in elastic–plastic materials. Int J Fract. 2014;187(1):77–107. doi: 10.1007/s10704-013-9920-6
  • Kolednik O, Tiwari A, Posch C, et al. Configurational force based analysis of creep crack growth. Int J Fract. 2022;236(2):175–199. doi: 10.1007/s10704-022-00645-z
  • Tiwari A, Wiener J, Arbeiter F, et al. Application of the material inhomogeneity effect for the improvement of fracture toughness of a brittle polymer. Eng Fract Mech. 2020;224:106776. doi: 10.1016/j.engfracmech.2019.106776
  • Simha N, Fischer F, Kolednik O, et al. Inhomogeneity effects on the crack driving force in elastic and elastic–plastic materials. J Mech Phys Solids. 2003;51(1):209–240. doi: 10.1016/S0022-5096(02)00025-X
  • Fischer FD, Simha NK, Predan J, et al. On configurational forces at boundaries in fracture mechanics. Int J Fract. 2012;174(1):61–74. doi: 10.1007/s10704-011-9672-0
  • Kolednik O, Predan J, Fischer FD. Cracks in inhomogeneous materials: comprehensive assessment using the configurational forces concept. Eng Fract Mech. 2010;77(14):2698–2711. doi: 10.1016/j.engfracmech.2010.07.002
  • Kolednik O, et al. Development of damage-tolerant and fracture-resistant materials by utilizing the material inhomogeneity effect. J Appl Mech. 2019;86(11)
  • Simha N, Fischer FD, Kolednik O, et al. Crack tip shielding or anti-shielding due to smooth and discontinuous material inhomogeneities. Int J Fract. 2005;135(1):73–93. doi: 10.1007/s10704-005-3944-5
  • Maugin GA. Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Press; 2016.
  • Gurtin ME. The nature of configurational forces. In: Fundamental contributions to the continuum theory of evolving phase interfaces in solids. Springer; 1999. pp. 281–314.
  • Saxena A. Fracture mechanics approaches for characterizing creep-fatigue crack growth. JSME International Journal Ser A, Mechanics And Material Engineering. 1993;36(1):1–20. doi: 10.1299/jsmea1993.36.1_1
  • Hoff NJ. Approximate analysis of structures in the presence of moderately large creep deformations. Quarterly Of Applied Mathematics. 1954;12(1):49–55. doi: 10.1090/qam/61004
  • Landes J, Begley J A fracture mechanics approach to creep. In: Mechanics of Crack Growth: Proceedings of the Eighth National Symposium on Fracture Mechanics, a Symposium. vol. 10. ASTM; 1976. p. 128.
  • Ohji K, Ogura K, Kubo S. Creep crack propagation rate in SUS 304 stainless steel and interpretation in terms of modified J-integral. Trans Jpn Soc Mech Eng. 1976;42:350–358.
  • Nikbin K, Webster G, Turner C. Relevance of nonlinear fracture mechanics to creep cracking. In: Cracks and fracture. ASTM International; 1976.
  • Saxena A. Creep crack-growth under non SteadyState conditions. In: Journal of testing and evaluation. Vol. 12. Conshohocken, PA 19428-2959: Amer soc testing materials 100 barr harbor DR, W; 1984. pp. 191–192.
  • Atluri S, Nishioka T, Nakagaki M. Incremental path-independent integrals in inelastic and dynamic fracture mechanics. Eng Fract Mech. 1984;20(2):209–244. doi: 10.1016/0013-7944(84)90129-2
  • Abaqus G. Abaqus 6.18. Dassault systemes simulia corporation. Providence, RI, USA; 2018.
  • Miao K, Liu J, Yin Y, et al. Microstructure and failure analysis of TP347H/T91 dissimilar steel welded piping. J Fail Anal Prev. 2022;22(2):578–586. doi: 10.1007/s11668-022-01349-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.