335
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal creep properties of virgin and irradiated cladding tubes made of Ti-stabilised DIN 1.4970 (15-15Ti) austenitic stainless steel

, &
Pages 284-293 | Received 14 May 2023, Accepted 08 Feb 2024, Published online: 06 Mar 2024

References

  • RCC-MRx. Design and construction rules for mechanical components of nuclear installations: high temperature, research and fusion, reactors, Afcen RCC-MRx code 2018. ed ed. Courbevoie, France: Afcen; 2018.
  • Bergmann HJ, Zusammenstellung von Bestrahlungskriechdaten der Werkstoffe 1.4970 KV; 1.4970 KV, A und 1.4981 KV (Materialdatenreferenzliste). Interatom - Belgonucléaire, Report Nr.: ITB 403.31113_4, 1983.
  • Bergmann HJ, Dietz W, Ehrlich K, et al., Entwicklung des Werkstoffs X10CrNiMiTiB 15 15 als Strukturmaterial für Brennelemente. Institution: FZK and Interatom/Siemens-KWU, Report Nr.: FZKA 6864, 2003.
  • Cautaerts N, Delville R, Dietz W, et al. Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes. J Nucl Mater. 2017;493:154–167. doi:10.1016/j.jnucmat.2017.06.013
  • Wassilew C, Schneider W, Ehrlich K. Creep and creep-rupture properties of type-1.4970 stainless-steel during and after irradiation, radiation effects and defects in solids 1986. Rad Eff. 1986;101(1–4):201–219. doi: 10.1080/00337578708224749
  • Holmström S Determination of high temperature material properties of 15-15Ti steel by small specimen techniques, EUR 28746 EN. Luxembourg: Publications Office of the European Union; 2017. ISBN 978-92-79-72278-3. doi:10.2760/259065.
  • Holmström SEA. Test methodologies for determining high temperature material properties of thin walled tubes, EUR 28642 EN. Luxembourg: Publications Office of the European Union; 2017. ISBN 978-92-79-69515-5. doi:10.2760/702821.
  • CEN Technical Report, New approaches to determine negligible creep of steels for EN 13445, CEN/TC 54 WG59, Currently under review by CEN. Nov-2022.
  • Holmström S. Defining a negligible creep temperature curve for Gr. 91 steel. Int J Pres Ves Pip. 2016;146:198–202. ISSN 0308-0161. doi: 10.1016/j.ijpvp.2016.07.004
  • EN 13445-3:2014+A4 2018, Unfired pressure vessels - design
  • Egnell L. An austenitic steel for high-temperature service applications. Metal Progress. 1970;98(3):102–107.
  • Jung P, Sagués AA, Schroeder H, et al. Creep and creep rupture of thin stainless steel specimens. J Nucl Mater. 1978;74(2):348–350. 1994. doi: 10.1016/0022-3115(78)90373-2
  • Latha S, Mathew MD, Parameswaran P, et al. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes. Int J Pres Ves Pip. 2008;85(12):866–870. doi: 10.1016/j.ijpvp.2008.07.002
  • Ehrlich K. Irradiation creep and interrelation with swelling in austenitic stainless steels. Journal of Nuclear Materials. 1981;100(1-3):149–166. doi:10.1016/0022-3115(81)90531-6
  • Maillard A, Touron H, Seran JL, et al. (1994). Swelling and irradiation creep of neutron-irradiated 316ti and 15-15ti steels. Effects of Radiation on Materials: 16th International Symposium 1175, 20-25 Jun 1992, Denver, CO, United States, 824–837.
  • Maziasz PJ, BUSBY JT. Properties of austenitic stainless steels for nuclear reactor applications. United States: Elsevier; 2012.
  • Kesternich W, Meertens D. Microstructural Evolution of a Titanium-Stabilized 15Cr-15Ni Steel. Acta Metall. 1986;34(6):1071–1082. doi: 10.1016/0001-6160(86)90217-8
  • Latha S, Mathew MD, Parameswaran P, et al. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-ti stainless steel. J Nucl Mater. 2011;409(3):214–220. doi: 10.1016/j.jnucmat.2010.12.240
  • Mateus Freire L. Evolutions microstructurales et comportement en fluage à haute température d’un acier inoxydable austénitique, Ecole doctorale n°432. Microstructural evolutions and creep behaviour at high temperature of an austenitic stainless steel. PSL Research University; 2018.
  • Nandedkar RV, Kesternich W. Effect of boron on high-temperature creep-behavior of austenitic stainless-steel DIN-1.4970. Metall Mater Trans A. 1990;21(12):3033–3038. doi: 10.1007/BF02647301
  • Vijayanand VD, Parameswaran P, Nandagopal M, et al. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel. J Nucl Mater. 2013;438(1–3):51–57. doi: 10.1016/j.jnucmat.2013.03.014
  • Cautaerts N, Delville R, Stergar E, et al. The role of Ti and TiC nanoprecipitates in radiation resistant austenitic steel: a nanoscale study. Acta Mater. 2020;197:184–197. doi: 10.1016/j.actamat.2020.07.022
  • Cautaerts N, Delville R, Stergar E, et al. Tailoring the Ti-C nanoprecipitate population and microstructure of titanium stabilized austenitic steels. J Nucl Mater. 2018;507:177–187. doi: 10.1016/j.jnucmat.2018.04.041
  • Cautaerts N, Delville R, Stergar E, et al. Characterization of (Ti,mo,cr)c nanoprecipitates in an austenitic stainless steel on the atomic scale. Acta Mater. 2019;164:90–98. doi: 10.1016/j.actamat.2018.10.018
  • Bruemmer S, Simonen EP, Scott PM, et al. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J Nucl Mater. 1999;274(3):299–314. doi: 10.1016/S0022-3115(99)00075-6
  • Kenik EA, Hojou K. Radiation-induced segregation in FFTF irradiated austenitic stainless steels. J Nucl Mater. 1992;191-194:1331–1335. doi: 10.1016/0022-3115(92)90691-D
  • Maziasz P. J. Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels. J Nucl Mater. 1989;169(C):95–115. doi: 10.1016/0022-3115(89)90525-4
  • Lee E, Maziasz P, Rowcliffe A, The structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments. Tech. rep. Oak Ridge National Lab, 1980. URL: https://tinyurl.com/y4ukccah
  • Zinkle S, Maziasz P, Stoller R. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J Nucl Mater. 1993;206(2–3):266–286. doi: 10.1016/0022-3115(93)90128-L
  • Garner FA. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. ISSN 0022-3115. J Nucl Mater. 2000;276(1–3):123–142. doi: 10.1016/S0022-3115(99)00225-1
  • Wilshire B, Scharning PJ, Hurst R. A new approach to creep data assessment. Mater Sci Eng A. 2009;510–511:3–6. ISSN 0921-5093. doi: 10.1016/j.msea.2008.04.125
  • Rantala J, Moilanen P, Ehrnsten U, et al., Results of creep tests of pressurized cladding tubes, materials testing and rules (MATTER), Deliverable D3.7, 2015.
  • ECCC Recommendations Volumes 5 Part 1a. Generic recommendations and guidance for the assessment of full size creep rupture datasets, issue 6. Holdsworth, S.R., ed. Italy: publ. Centro Sviluppo Materiali; 2014.
  • Mateus Freire L, Evolution microstructurales et comportement en fluage a haute temperature d’un acier inoxydable austenitique. PhD Thesis, Ecole doctorale n°432, 2018
  • Final report summary - MATTER (MATerials TEsting and Rules), CORDIS data base on EU-Funded projects, https://cordis.europa.eu/project/id/269706/reporting/fr