9,543
Views
93
CrossRef citations to date
0
Altmetric
information

Challenging the assumptions for thermal sensation scales

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Andersen, R. (2012). The influence of occupants’ behaviour on energy consumption investigated in 290 identical dwellings and in 35 apartments. Proceedings of Healthy Buildings 2012, Brisbane, Australia.
  • ASHRAE. (1968). Handbook of fundamentals. New York: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • ASHRAE. (2013). Standard 55-2013. thermal environmental conditions for human occupancy. New York: American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • ASHRAE RP884. (2004). ASHRAE RP884. Retrieved from http://sydney.edu.au/architecture/staff/homepage/richard_de_dear/index.shtml
  • Auliciems, A. (1981a). Psycho-physiological criteria for global thermal zones of building design. International Journal of Biometeorology, 26, 69–86.
  • Auliciems, A. (1981b). Towards a psychophysiological model of thermal perception. International Journal of Biometeorology, 25, 109–122. doi: 10.1007/BF02184458
  • Becker, R., & Paciuk, M. (2009). Thermal comfort in residential buildings–failure to predict by standard model. Building and Environment, 44(5), 948–960. doi: 10.1016/j.buildenv.2008.06.011
  • Bedford, T. (1936). The warmth factor in comfort at work: A physiological study of heating and ventilation. Industrial Health Research Board Report, 76 , Medical Research Council. London: HMSO.
  • Brager, G. S., Paliaga, G. and de Dear, R. (2004). Operable windows, personal control, and occupant comfort. ASHRAE Transactions, 110, Part 2:17–35.
  • Cao, B., Zhu, Y., Ouyang, Q., Zhou, X., & Huang, L. (2011). Field study of human thermal comfort and thermal adaptability during the summer and winter in Beijing. Energy and Buildings, 43(5), 1051–1056. Tackling building energy consumption challenges – Special Issue of {ISHVAC} 2009, Nanjing, China. doi: 10.1016/j.enbuild.2010.09.025
  • Corgnati, S. P., Ansaldi, R., & Filippi, M. (2009). Thermal comfort in Italian classrooms under free running conditions during mid seasons: Assessment through objective and subjective approaches. Building and Environment, 44(4), 785–792. doi: 10.1016/j.buildenv.2008.05.023
  • de Dear, R. (2011). Revisiting an old hypothesis of human thermal perception: Alliesthesia. Building Research & Information, 39(2), 108–117. doi: 10.1080/09613218.2011.552269
  • de Dear, R., Brager, G., & Cooper, D. (1997). Developing an adaptive model of thermal comfort and preference. In Final Report on ASHRAE Research Project 884. Macquarie University Sydney.
  • EN 15251. (2012). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics; German version EN 15251:2012. DIN EN 15251.
  • Erickson, V. L., & Cerpa, A. E. (2012). Thermovote: participatory sensing for efficient building HVAC conditioning. In Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 9–16. ACM.
  • Fanger, P. O. (1970). Thermal comfort analysis and applications in environmental engineering. New York: McGraw-Hill.
  • Friedman, H. H., & Amoo, T. (1999). Rating the rating scales. Journal of Marketing Management, 9(3), 114–123.
  • Gagge, A. P., Stolwijk, J., & Hardy, J. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental Research, 1(1), 1–20. doi: 10.1016/0013-9351(67)90002-3
  • Gagge, A. P., Stolwijk, J., & Nishi, Y. (1971). An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Transactions, 77(1), 247–262.
  • Goto, T., Mitamura, T., Yoshino, H., Tamura, A., & Inomata, E. (2007). Long-term field survey on thermal adaptation in office buildings in Japan. Building and Environment, 42(12), 3944–3954. doi: 10.1016/j.buildenv.2006.06.026
  • Griffiths, I. (1990). Thermal comfort studies in buildings with passive solar features; field studies, Report No. ENS35090. Technical report, Commission of the European Community.
  • Halawa, E., & van Hoof, J. (2012). The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 51, 101–110. doi: 10.1016/j.enbuild.2012.04.011
  • Hawighorst, M., Schweiker, M., & Wagner, A. (2015). The psychology of thermal comfort: Influences of thermo-specific self-efficacy and climate sensitiveness. In M. Loomans & M. te Kulve (Eds.), Proceedings of the healthy buildings Europe, Eindhoven the psychology of thermal comfort: Influences of thermo-specific self-efficacy and climate sensitiveness.
  • Heidari, S., & Sharples, S. (2002). A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings, 34(6), 607–614. doi: 10.1016/S0378-7788(02)00011-7
  • Hong, S. H., Gilbertson, J., Oreszczyn, T., Green, G., & Ridley, I. (2009). A field study of thermal comfort in low-income dwellings in England before and after energy efficient refurbishment. Building and Environment, 44(6), 1228–1236. doi: 10.1016/j.buildenv.2008.09.003
  • Houghten, F., & Yagloglou, C. (1923). Determination of the comfort zone. Journal of ASHVE, 29, 361–384.
  • Huizenga, C., Abbaszadeh, S., Zagreus, L., & Arens, E. A. (2006). Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey. In Proceedings of conference: Healthy Buildings, Vol. III, 393–397. Lisbon, Portugal.
  • Humphreys, M. A. (1976). Field studies of thermal comfort compared and applied. Journal of the Institution of Heating and Ventilating Engineers, 44, 5–27.
  • Humphreys, M. A., & Hancock, M. (2007). Do people like to feel ‘neutral’?: Exploring the variation of the desired thermal sensation on the ASHRAE scale. Energy and Buildings, 39(7), 867–874. doi: 10.1016/j.enbuild.2007.02.014
  • Humphreys, M. A., & Nicol, J. F. (2004). Do people like to feel ‘neutral’? Response to the ASHRAE scale of subjective warmth in relation to thermal preference, indoor and outdoor temperature. ASHRAE Transactions, 110(2), 569–577.
  • Humphreys, M., Rijal, H., & Nicol, J. (2010). Examining and developing the adaptive relation between climate and thermal comfort indoors. In Proceedings of conference: Adapting to change: new thinking on comfort, Windsor, UK, Network for Comfort and Energy Use in Buildings, London, pp. 9–11.
  • Indraganti, M., & Rao, K. D. (2010). Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy and Buildings, 42(3), 273–281. doi: 10.1016/j.enbuild.2009.09.003
  • ISO 10551. (1995). Ergonomics of the thermal environment–assessment of the influence of the thermal environment using subjective judgement scales. Geneva, Switzerland: International Organization for Standardization.
  • Jazizadeh, F., Marin, F. M., & Becerik-Gerber, B. (2013). A thermal preference scale for personalized comfort profile identification via participatory sensing. Building and Environment, 68, 140–149. doi: 10.1016/j.buildenv.2013.06.011
  • Karjalainen, S. (2012). Thermal comfort and gender: A literature review. Indoor Air, 22(2), 96–109. doi: 10.1111/j.1600-0668.2011.00747.x
  • Kolarik, J., Toftum, J., Olesen, B. W., & Shitzer, A. (2009). Occupant responses and office work performance in environments with moderately drifting operative temperatures (rp-1269). HVAC&R Research, 15(5), 931–960. doi: 10.1080/10789669.2009.10390873
  • Lantz, B. (2013). Equidistance of Likert-type scales and validation of inferential methods using experiments and simulations. Electronic Journal of Business Research Methods, 11(1), 16–28.
  • Lautenbacher, S., Moltner, A., & Strian, F. (1992). Psychophysical features of the transition from pure heat perception to heat pain perception. Perception & Psychophysics, 52(6), 685–690. doi: 10.3758/BF03211705
  • Lee, J.-Y., Stone, E. A., Wakabayashi, H., & Tochihara, Y. (2010). Issues in combining the categorical and visual analog scale for the assessment of perceived thermal sensation: Methodological and conceptual considerations. Applied Ergonomics, 41(2), 282–290. doi: 10.1016/j.apergo.2009.07.007
  • Macfarlane, W. (1978). Thermal comfort studies since 1958. Architectural Science Review, 21(4), 86–92. doi: 10.1080/00038628.1978.9697240
  • McIntyre, D. (1978). Seven point scales of warmth. Building Services Engineering Research and Technology, 45, 215–226.
  • McIntyre, D. A. (1980). Indoor climate. London: Applied Science Publisher.
  • Melzack, R., & Casey, K. L. (1968). Sensory, motivational, and central control determinants of pain. In The skin senses, pp. 423–439.
  • Nicol, J., Doré, C., Weiner, J., Lee, D., Prestidge, S., & Andrews, M. (1973). Comfort studies of rail passengers. British Journal of Industrial Medicine, 30(4), 325–334.
  • Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34, 563–572. doi: 10.1016/S0378-7788(02)00006-3
  • Nicol, J. F., & Humphreys, M. A. (2010). Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Building and Environment, 45, 11–17. doi: 10.1016/j.buildenv.2008.12.013
  • Olesen, B. W. (2007). The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings. Energy and Buildings, 39(7), 740–749. Comfort and Energy Use in Buildings – Getting Them Right. doi: 10.1016/j.enbuild.2007.02.011
  • Parsons, K. (2014). Human thermal environments (3rd ed). Boca Raton, FL: CRC Press.
  • Paulhus, D. L. (1991). Measurement and control of response bias.
  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
  • Rohles, F., Woods, J., & Morey, P. (1989). Indoor environment acceptability: The development of a rating scale. ASHRAE transactions, 95, 23–27.
  • Rohles, F. H. (2007). Temperature & temperament: A psychologist looks at comfort. ASHRAE Journal, 49(2), 14–22.
  • Schwarz, N., & Sudman, S. (2012). Context effects in social and psychological research. New York: Springer Science & Business Media.
  • Schweiker, M., Brasche, S., Bischof, W., & Wagner, A. (2012). Is there a method for understanding human reactions to climatic changes? – Developing experimental designs for climate chambers and field measurements to reveal further insights to adaptive processes. Proceedings of 7th Windsor Conference: The changing context of comfort in an unpredictable world Cumberland Lodge, Windsor, UK.
  • Schweiker, M., & Wagner, A. (2015). A framework for an adaptive thermal heat balance model (ATHB). Building and Environment, 94, 252–262. doi: 10.1016/j.buildenv.2015.08.018
  • Schweiker, M., & Wagner, A. (2016). The effect of occupancy on perceived control, neutral temperature, and behavioral patterns. Energy and Buildings, 117, 246–259. doi: 10.1016/j.enbuild.2015.10.051
  • Singh, M. K., Mahapatra, S., & Atreya, S. (2011). Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 88(7), 2420–2428. doi: 10.1016/j.apenergy.2011.01.019
  • Spagnolo, J., & de Dear, R. (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment, 38(5), 721–738. doi: 10.1016/S0360-1323(02)00209-3
  • Stevens, S. S. (1960). The psychophysics of sensory function. American Scientist, 48(2), 226–253.
  • Tablada, A., De Troyer, F., Blocken, B., Carmeliet, J., & Verschure, H. (2009). On natural ventilation and thermal comfort in compact urban environments – The old Havana case. Building and Environment, 44(9), 1943–1958. doi: 10.1016/j.buildenv.2009.01.008
  • Toftum, J., Wyon, D., Svanekjær, H., & Lantner, A. (2005). Remote performance measurement (rpm)–a new, internet-based method for the measurement of occupant performance in office buildings. In 10th International Conference on Indoor Air Quality and Climate, pp. 357–361.
  • Tuomaala, P., Holopainen, R., Piira, K., & Airaksinen, M. (2013). Impact of individual characteristics such as age, gender, BMI and fitness on human thermal sensation. Proceedings of BS, pp. 26–28.
  • Villemure, C., & Bushnell, M. C. (2009). Mood influences supraspinal pain processing separately from attention. Journal of Neuroscience, 29(3), 705–715. doi: 10.1523/JNEUROSCI.3822-08.2009
  • Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., … Cohen, J. D. (2004). Placebo-induced changes in FMRI in the anticipation and experience of pain. Science, 303(5661), 1162–1167. doi: 10.1126/science.1093065
  • Wiech, K., Kalisch, R., Weiskopf, N., Pleger, B., Stephan, K. E., & Dolan, R. J. (2006). Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. Journal of Neuroscience, 26(44), 11501–11509. doi: 10.1523/JNEUROSCI.2568-06.2006
  • Winslow, C.-E., Herrington, L. P., & Gagge, A. P. (1937). Relations between atmospheric conditions, physiological reactions and sensations of pleasantness. American Journal of Epidemiology, 26(1), 103–115. doi: 10.1093/oxfordjournals.aje.a118325
  • Wong, N., Feriadi, H., Lim, P., Tham, K., Sekhar, C., & Cheong, K. (2002). Thermal comfort evaluation of naturally ventilated public housing in Singapore. Building and Environment, 37(12), 1267–1277. doi: 10.1016/S0360-1323(01)00103-2
  • Wong, N. H., & Khoo, S. S. (2003). Thermal comfort in classrooms in the tropics. Energy and Buildings, 35(4), 337–351. doi: 10.1016/S0378-7788(02)00109-3
  • Yang, W., & Zhang, G. (2008). Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China. International Journal of Biometeorology, 52(5), 385–398. doi: 10.1007/s00484-007-0133-4
  • Yun, H., Nam, I., Kim, J., Yang, J., Lee, K., & Sohn, J. (2014). A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Building and Environment, 75, 182–189. doi: 10.1016/j.buildenv.2014.02.003
  • Zhang, Y., & Altan, H. (2011). A comparison of the occupant comfort in a conventional high-rise office block and a contemporary environmentally-concerned building. Building and Environment, 46(2), 535–545. doi: 10.1016/j.buildenv.2010.09.001
  • Zhang, Y., Wang, J., Chen, H., Zhang, J., & Meng, Q. (2010). Thermal comfort in naturally ventilated buildings in hot-humid area of China. Building and Environment, 45(11), 2562–2570. doi: 10.1016/j.buildenv.2010.05.024