1,118
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Structural health monitoring of timber buildings: a literature survey

&
Pages 817-837 | Received 08 Jul 2019, Accepted 11 Oct 2019, Published online: 11 Nov 2019

References

  • Abrahamsen, R. (2017). Mjøstårnet – construction of an 81 m tall timber building. 23. Internationales Holzbau-Forum IHF.
  • Ahvenainen, J. (2018). Storaenso smart timber components. Conference call with Ahvenainen Julia, December 4, 2018.
  • Aktan, A. E., Catbas, F. N., Grimmelsman, K. A., & Pervizpour, M. (2003). Development of a model health monitoring guide for major bridges. A report published by the United States Department of Transportation, Drexel University Intelligent Infrastructure Institute.
  • Aktan, A. E., Ellingwood, B. R., & Kehoe, B. (2007). Performance-based engineering of constructed systems. Journal of Structural Engineering. doi: 10.1061/(ASCE)0733-9445(2007)133:3(311)
  • Alsayegh, G. (2012). Hygrothermal properties of cross laminated timber and moisture response of wood at high relative humidity (Master’s thesis), Carleton University.
  • Altunişik, A., Karahasan, O., Okur, F., Kalkan, E., & Ozgan, K. (2018). Finite element model updating and dynamic analysis of a restored historical timber Mosque based on ambient vibration tests. Journal of Testing and Evaluation, 47(5), 20180122.
  • Arda Buyuktaskin, H. A., Yatagan, M. S., Erol Soyoz, G., Tanacan, L., & Dilmaghani, M. (2019). Experimental investigation of the durability of load bearing timber-glass composites under the effects of accelerated aging. Journal of Green Building, 14(2), 45–59.
  • Armstrong, L., & Kingston, R. (1960). Effect of moisture changes on creep in wood. Nature, 185, 862–863.
  • Bağbanci, M. B., & Köprülü Bağbancı, Ö. (2018). The dynamic properties of historic timber-framed masonry structures in Bursa, Turkey. Shock and Vibration, 2018(1), 1–11.
  • Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S., & Beekhuyzen, J. (2015). Achieving rigor in literature reviews: Insights from qualitative data analysis and tool-support. Communications of the Association for Information Systems, 37, 154–204.
  • Bastidas-Arteaga, E., Aoues, Y., & Chateauneuf, A. (2015). Optimizing the design of timber components under decay and climate variations. First International Conference on Bio-based Building Materials (ICBBM 2015), June, Clermont-Ferrand, France.
  • Bečkovský, D., Vlach, F., Vitík, J., & Šuhajdová, E. (2016). Mold growth risk analysis on the surfaces of an organic building structure based on in situ monitoring. Applied Mechanics and Materials, 824, 235–242.
  • Bignotti, G. (2013). 12 years of structural health assessment and maintenance for the glulam timber structure of the Mormanno traffic bridge in Calabria. Advanced Materials Research, 778, 771–778.
  • Bjorngrim, N., Hagman, O., & Wang, X. A. (2016). Moisture content monitoring of a timber footbridge. Bioresource Technology, 11(2), 3904–3913.
  • Bolognani, D., Verzobio, A., Tonelli, D., Cappello, C., Glisic, B., Zonta, D., …  Kopsaftopoulos, F. (2018). Quantifying the benefit of structural health monitoring: What if the manager is not the owner? Structural Health Monitoring, 17(6), 1393–1409.
  • Chen, H. P. (2018). Structural health monitoring of large civil engineering structures. first Edition. Hua-Peng Chen. Oxford: John Wiley & Sons.
  • Chen, Z., Zhu, E., Pan, J., & Wu, G. (2015). Energy-dissipation performance of typical beam-column joints in Yingxian wood Pagoda: Experimental study. Journal of Performance of Constructed Facilities, 30, 3. doi: 10.1061/(ASCE)CF.1943-5509.0000771
  • Chun, Q., & Sun, L. (2014). Structural performance analysis and repair design of Wenxing Lounge bridge. Advanced Materials Research, 778, 1014–1019.
  • Cointe, A., Castera, P., Morlier, P., & Galimard, P. (2007). Diagnosis and monitoring of timber buildings of cultural heritage. Structural Safety Journal, 29(4), 337–348.
  • Cremona, C. (2016). Big data and structural health monitoring. Proceedings of the 19th IABSE Congress: Challenges in Design and Construction of an Innovative and Sustainable Built Environment, Stockholm, Sweden, September 21–23, pp. 1788–1796.
  • Crocetti, R. (2016). Large-span timber structures. Proceedings of the World Congress on Civil, Structural and Environmental Engineering (CSEE’16), Prague, CZ, March, 30–31, Paper N. ICSENM 124.
  • D’Ayala, D., Branco, J., Riggio, M., Harte, A., Kurz, J., & Descamps, T. H. (2014). Assessment, reinforcement and monitoring of timber structures: FPS COST ACTION FP1101. World Conference on Timber Engineering (WCTE), Quebec City, Canada, August 10-14.
  • Del Grosso, A., Torre, A., Corte, G., Brunetti, G., & Inaudi, D. (2005). Structural monitoring in the Villa Reale of Monza (MI), Italy. Structural Analysis of Historical Constructions.
  • Dietsch, P., Franke, S., Franke, B., Gamper, A., & Winter, S. (2014). Methods to determine wood moisture content and their applicability in monitoring concepts. Journal of Civil Structural Health Monitoring, doi: 10.1007/s13349-014-0082-7
  • Dietsch, P., Gamper, A., Merk, M., & Winter, S. (2015). Monitoring building climate and timber moisture gradient in large-span timber structures. Journal of Civil Structural Health Monitoring, 5(2), 153–165.
  • Dilmaghani, M. (2019). Usefulness of structural health monitoring for the wood construction industry: Global and local perspectives (MS thesis), Wood Science, Oregon State University.
  • Doudak, G., McClure, G., Smith, I., Hu, L., & Stathopoulos, T. (2005). Monitoring structural response of a wooden light-frame industrial shed building to environmental loads. Journal of Structural Engineering, doi: 10.1061/(ASCE)0733-9445(2005)131:5(794)
  • Ellis, B. R., & Bougard, A. J. (2001). Dynamic testing and stiffness evaluation of a six-storey timber framed building during construction. Journal of Engineering Structures, 23, 1232–1242.
  • Evans, F. G. (2006). Monitoring of timber bridges in Norway Results December 2005. A report, Norsk Treteknisk Institutt, Norway.
  • Feldmann, A., Huang, H., Chang, W., Harris, R., Dietsch, P., Gräfe, M., & Hein, C. (2016). Dynamic properties of tall timber structures under wind-induced vibration. World Conference on Timber Engineering (WCTE), August 22-25, Vienna, Austria.
  • Feltrin, G., Jalsan K, E., & Flouri, K. (2013). Vibration monitoring of a footbridge with a wireless sensor network. Journal of Vibration and Control, 19(15), 2285–2300.
  • Franke, B., Franke, S., Schiere, M., & Müller, A. (2018). Moisture content and moisture-induced stresses of large glulam members: Laboratory tests, in-situ measurements and modelling. Wood Material Science and Engineering, doi: 10.1080/17480272.2018.1551930
  • Frangopol, D. M., & Messervey, T. B. (2009). Maintenance Principle for Civil Structures. In C. Boller, F-K. Chang & Y. Fujino (Ed.), Encyclopedia of structural health monitoring. Chichester, UK: John Wiley & Sons.
  • Franke, B., Widmann, R., Muller, A., & Tannert, T. (2013). Assessment and monitoring of the moisture content of timber bridges. International Conference on Timber Bridges, Las Vegas, Nevada USA.
  • Fujita, K., Hanazato, T., & Sakamoto, I. (2004). Earthquake response monitoring and seismic performance of five-storied timber Pagoda. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1–6.
  • Gamper, A., Dietsch, P., Merk, M., & Winter, S. (2012). Building climate–long-term measurements to determine the effect on the moisture gradient in timber structures. Final Report, Lehrstuhl f¨ur Holzbau und Baukonstruktion, Technische Universität München.
  • GB 50982-2014. (2014). Technical code for monitoring of building and bridge structures. (in Chinese).
  • Glass, S. V., & Zelinka, S. L. (2010). “Chapter 4 – moisture relations and physical properties of wood.” in Wood Handbook – Wood as an engineering material, pp. 1–20.
  • Granello, G., Leyder, C., Frangi, A., Palermo, A., & Chatzi, E. (2019). Long-term performance assessment of an operative post-tensioned timber frame structure. Journal of Structural Engineering, 145(5), 04019034.
  • Green, M., & Taggart, J. (2017). Tall wood buildings: Design, construction and performance. Basel: Birkhäuser.
  • Grossman, P. U. A. (1976). Requirements for a model that exhibits mechano-sorptive behavior. Wood Science and Technology, 10, 163–168.
  • Gustafsson, A., Pousette, A., & Bjorngrim, N. (2010). Health monitoring of timber bridges. ITCB 2010, International Conference on Timber Bridges, 13–14 September, Lillehammer, Norway.
  • Hafeez, G., Doudak, G., & McClure, G. (2018a). Dynamic characteristics of light-frame wood buildings. Canadian Journal of Civil Engineering, 46(1), 1–12.
  • Hafeez, G., Doudak, G., & McClure, G. (2018b). Establishing the fundamental period of light-frame wood buildings on the basis of ambient vibration tests. Canadian Journal of Civil Engineering, 45, 752–765. doi: 10.1139/cjce-2017-0348
  • Hafeez, Gh. (2017). Dynamic characteristics of light-frame wood buildings. (Ph.D. thesis). Civil Engineering, Department of Civil and Environmental Engineering, University of Ottawa, Ottawa, Canada.
  • Hall, G. D., & Flock, S. K. (2008). In situ moisture testing of building products as a predictor of actual conditions. Proceedings of the BEST1 Conference, June 10-12, Minneapolis, MN, United States.
  • Hasan, M., Despot, R., Trajković, J., Rapp, A. O., Brischke, Ch., & Welzbacher, Ch. R. (2013). The echo (Jeka) Pavilion in Forest-Park Maksimir Zagreb – reconstruction and health monitoring. Advanced Materials Research, 778, 765–770.
  • Hayashi, Y., Miyamoto, M., Nii, A., Suzuki, Y., & Morii, T. (2005). Structural health monitoring of huge traditional timber structure in Japan. The 2nd International Conference on Structural Health Monitoring of Intelligent Infrastructure.
  • Hunt, A. A. (2018). Wood and evolving codes: the 2018 IBC and emerging wood technologies. Architectural Record.
  • ICC (International Code Council). (2018). International building code.
  • ISO 13822. (2010). Bases for design of structures – assessment of existing structures.
  • ISO 15686-1. (2011). Buildings and constructed assets – service life planning – part 1: General principles and framework.
  • ISO 2394. (1998). General principles on reliability for structures.
  • Jiang, S., Li, N., Wu, M., Shen, S., & Zhang, Y. (2018). Damage prognosis of China ancient wooden buildings based on structural health monitoring system. Proceedings SPIE 10598, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 27 March.
  • Jorge, L., Dias, A., & Costa, R. (2015). Performance of X-Lam panels in a sports center with an indoor swimming-pool. Journal of Civil Structural Health Monitoring, 5(2), 129–139.
  • Jutila, A. (2003). Findings and points of interest of the Nordic Timber Bridge Projects. 9. Internationales Holzbau-Forum.
  • Karacabeyli, E., & Lum, C. (2014). Technical guide for the design and construction of tall wood buildings in Canada. FPInnovations. Special Publication, SP-55E, Canada.
  • Kim, Y. M. (2014). Monitoring of moisture contents in Korean traditional wooden houses. Proceedings of the World Congress on Engineering (WCE), London, U.K, July 2-4.
  • Koch, J., Simon, A., & Arndt, R. W. (2016). Monitoring of moisture content of protected timber bridges. World Conference on Timber Engineering (WCTE), Vienna, Austria.
  • Kolb, J. (2008). Systems in timber engineering: Loadbearing structures and component layers. German Society of Wood Research Staff Lignum – Holzwirtschaft Schweiz Staff. Birkhäuser, Basel-Berlin-Boston.
  • Krzisnik, D., Lesar, B., Thaler, N., & Humar, M. (2018). Micro and material climate monitoring in wooden buildings in sub-alpine environments. Journal of Construction and Building Materials, 166, 188–195.
  • Leyder, C., Chatzi, E., & Frangi, A. (2017). Vibration-based model updating of a timber frame structure. Procedia Engineering: X International Conference on Structural Dynamics, EURODYN 2017, Rome, Italy, pp. 2132–2139.
  • Leyder, C., Wanninger, F., Frangi, A., & Chatzi, E. (2015). Dynamic response of an innovative hybrid structure in hardwood. Proceedings of the Institution of Civil Engineers-Construction Materials, pp. 132–143.
  • Li, N. L., Jiang, S. F., Wu, M. H., Shen, S., & Zhang, Y. (2018). Deformation monitoring for Chinese traditional timber buildings using fiber Bragg Grating sensors. Sensors (Basel), 18(6), 1968. doi: 10.3390/s18061968
  • Liisma, E., Kalamees, T., Kuus, B., & Kukk, V. (2019). A case study on construction of CLT building without preliminary roof. 1. Forum Wood Building Baltic 2019.
  • Lynch, J. P., & Loh, K. J. (2006). A summary review of wireless sensors and sensor networks for structural health monitoring. The Shock and Vibration Digest, 38(2), 91–128.
  • Lyu, M., Zhu, X., & Yang, Q. (2017a). Condition assessment of heritage timber buildings in operational environments. Journal of Civil Structural Health Monitoring, 7(4), 505–516.
  • Lyu, M., Zhu, X., & Yang, Q. (2017b). Connection stiffness identification of historic timber buildings using temperature-based sensitivity analysis. Engineering Structures, 131, 180–191.
  • Marsili, R., Rossi, G., & Speranzin, E. (2017). Fibre Bragg gratings for the monitoring of wooden structures. Materials (Basel, Switzerland), 11(1), 7. doi: 10.3390/ma11010007
  • Metelli, G., Giuriani, E., & Marchina, E. (2013). The repair of timber beams with controlled-debonding steel plates. Advanced Materials Research, 778, 588–595.
  • Min, K., Kim, J., Park, S., & Park, C. (2013). Ambient vibration testing for story stiffness estimation of a heritage timber building. The Scientific World Journal, 2013, Article ID 198483, 9.
  • Miyamoto, S., Miyazawa, K., Irie, Y., Wu, J., Nomata, Y., & Goto, O. (2004). A study on seismic performance and seismic diagnosis, seismic retrofit of Japanese temple. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1–6.
  • Mohammad, M., Jones, R., & Karacabeyli, E. (2016). New heights in building with wood: Canada's tall wood buildings demonstration initiative. World Conference on Timber Engineering (WCTE), Vienna, Austria.
  • Moreu, F., Jo, H., Li, J., Kim, R. E., Cho, S., Kimmle, A., …  LaFave, J. M. (2015). Dynamic assessment of timber railroad bridges using displacements. Journal of Bridge Engineering, 20, (10), 04014114. doi: 10.1061/(ASCE)BE.1943-5592.0000726
  • Moreu, F., Li, X., Li, S. H., & Zhang, D. (2018). Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. Frontiers in Built Environment Journal. doi: 10.3389/fbuil.2018.00010
  • Morris, H., Carradine, D., & Li, M. (2018). Full-scale static and dynamic testing of timber frame houses damaged in the Christchurch earthquakes. World Conference on Timber Engineering (WCTE), South Korea, August 20–23.
  • Morris, H. W., Uma, S. R., Gledhill, K., Omenzetter, P., & Worth, M. (2010). The long term instrumentation of a timber building in Nelson NZ: the need for standardization. Proceedings of the International Council for Research and Innovation in Building and Construction CIB W18 Meeting 43 (pp. 1-10 ).
  • Morris, H., Worth, M., & Omenzetter, P. (2011). “Monitoring modern timber structures and connections.” In Proceedings of the 1st International Conference on Structural Health Assessment of Timber Structures, SHATIS 2011, pp 1–14.
  • Mufti, A. A. (2002). Structural health monitoring of innovative Canadian civil engineering structures. ISIS Canada (Intelligent Sensing for Innovative Structures), Structural Health Monitoring, 1(1), 89–103.
  • Mugabo, I., Barbosa, A. R., & Riggio, M. (2018). Modal identification study of a four-story mass-timber building. World Conference on Timber Engineering (WCTE), South Korea, August 20–23.
  • Mugabo, I., Barbosa, A. R., Riggio, M., & Batti, J. (2019a). Ambient vibration measurement data of a four-story mass timber building. Frontiers in Built Environment Journal, 5(67), 4. doi: 10.3389/fbuil.2019.00067
  • Mugabo, I., Barbosa, A. R., Riggio, M., & Batti, J. (2019b). Dynamic characterization and vibration analysis of a four-story mass timber building. Frontiers in Built Environment Journal, 5(86), 16. doi:10.3389/fbuil.2019.00086 section Structural Sensing.
  • Mustapha, G., Khondoker, K., & Higgins, J. (2018). Structural performance monitoring technology and data visualization tools and techniques – featured case study: UBC Tallwood House. 1st International Conference on New Horizons in Green Civil Engineering (NHICE-01), Victoria, BC, Canada, April 25–27.
  • Muszyński, L., Lagaňa, R., Davids, W., & Shaler, S. M. (2005). Comments on the experimental methodology for quantitative determination of the hygro-mechanical properties of wood. Holzforschung, 59(2), 232–239.
  • Oak Ridge National Laboratory (ORNL). (2012). BTRIC – WUFI designing tool – ORNL. Retrieved from http://www.oml.gov/sci/ees/etsd/btric/wufi/tool.shtml
  • Okoli, C., & Schabram, K. (2010). Guide to conducting a systematic literature review of information systems research. Sprouts: Working Papers on Information Systems.
  • Omenzetter, P., Morris, H., Worth, M., Kohli, V., & Uma, S. R. (2011). Long-term monitoring and field testing of an innovative multi-storey timber building. SPIE’s Smart Structures and Materials/Nondestructive Evaluation and Health Monitoring, San Diego, USA, pp. 798335-1-14.
  • Pirner, M., & Náprstek, J. (1988). A large span timber dome. International Journal of Space Structures, 3(2), 74–83.
  • Poništová, L., Fojtík, R., Mareček, D., Vašková, V., & Lokaj, A. (2018). Response of wooden footbridge to the dynamic load. ARPN Journal of Engineering and Applied Sciences, 13(5), 1943–1950.
  • Reynolds, T., Bolmsvik, Å, Vessby, J., Chang, W., Harris, R., & Bawcombe, J. (2014). Ambient vibration testing and modal analysis of multi-storey cross-laminated timber buildings. World Conference on Timber Engineering. doi:10.13140/2.1.4392.7363.
  • Reynolds, T., Casagrande, D., & Tomasi, R. (2016). Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal analysis. Journal of Construction and Building Materials. doi: 10.1016/j.conbuildmat.2015.09.056
  • Reynolds, T., Harris, R., Chang, W. S., Bregulla, J., & Bawcombe, J. (2015). Ambient vibration tests of a cross-laminated timber building. Proceedings of the Institution of Civil Engineers-Construction Materials. doi: 10.1680/coma.14.00047
  • Riggio, M., Anthony, R. W., Augelli, F., Kasal, B., Lechner, T., Muller, W., & Tannert, T. (2014). In situ assessment of structural timber using non-destructive techniques. Materials and Structures/Materiaux et Constructions, 47(5), 749–766.
  • Riggio, M., D’Ayala, D., Parisi, M. A., & Tardini, C. (2018). Assessment of heritage timber structures: Review of standards, guidelines and procedures. Journal of Cultural Heritage, 31, 220–235.
  • Riggio, M., Schmidt, E., & Mustapha, G. (2019). Moisture monitoring data of mass timber elements during prolonged construction exposure: The case of the Forest Science complex (Peavy Hall) at Oregon State University. Frontiers in Built Environment. doi: 10.3389/fbuil.2019.00098
  • Ritter, M. A., Geske, E. A., Mason, L., McCutcheon, W. J., Moody, R. C., & Wacker, J. (1990). Performance of stress-laminated bridges. Wood Design Focus, 1, 12–16.
  • Rücker, W., Hille, F., & Rohrmann, R. (2006a). F08a guideline for the assessment of existing structures. SAMCO Final Report, Federal Institute of Materials Research and Testing (BAM), Berlin, Germany.
  • Rücker, W., Hille, F., & Rohrmann, R. (2006b). F08b guideline for structural health monitoring. SAMCO Final Report, Federal Institute of Materials Research and Testing (BAM), Berlin, Germany.
  • Rytter, T. (1993). Vibration based inspection of civil engineering structure (PhD dissertation), Department of building technology and structure engineering, Aalborg University, Denmark.
  • Salgado, R., Branco, J. M., Cruz, P., & Ayala, G. (2014). Serviceability assessment of the Góis footbridge using vibration monitoring. Case Studies in Nondestructive Testing and Evaluation, pp. 71–76.
  • Sarti, F., Palermo, A., & Pampanin, S. (2012). Simplified design procedures for post-tensioned seismic resistant timber walls. 15 WCEE LISBOA.
  • Schaffer, E. L. (1972). Modelling the creep of wood in a changing moisture environment. Wood Fiber, 3, 232–235.
  • Schänzlin, J. (2010). Modeling the long-term behavior of structural timber for typical service class-ii-conditions in south-west Germany. Stuttgart: University of Stuttgart.
  • Schmidt, E., & Riggio, M. (2019). Monitoring moisture performance of cross-laminated timber building elements during construction. Buildings, 9, 144. doi: 10.3390/buildings9060144
  • Schmidt, E., Riggio, M., Laleicke, P. F., Barbosa, A. R., & van den Wymelenberg, K. (2018). “How monitoring CLT buildings can remove market barriers and support designers in North America: an introduction to preliminary environmental studies.” Portuguese Journal of Structural Engineering. Ed. LNEC. Série III. n.o 7.
  • Serrano, E., Enquist, B., & Vessby, J. (2010). Vertical relative displacements in a medium-rise CLT-building. ICSA 2010 – 1st International Conference on Structures & Architecture, 21–23 July, Guimaraes, Portugal.
  • Simpson, W. T. (1973). Predicting equilibrium moisture content of wood by mathematical models. Wood Fiber Science, 5(1), 41–49.
  • Smith, I., Asiz, A., Dick, K., Doudak, G. H., & Mohammad, M. (2006). Field-monitoring, models and design of timber buildings. Proceeding of the World Conference in Timber Engineering, August 6-10, Portland, Oregon, USA.
  • Smith, T., Sarti, F., Granello, G., Marshall, J., Buckton-Wishart, V., Li, M., …  Pampanin, S. (2016). Long-term dynamic characteristics of pres-lam structures. World Conference on Timber Engineering, (WCTE), August 22-25, Vienna, Austria.
  • Sorin, E., Lanata, F., & Boudaud, C. (2016). Behaviour of timber structures under variable environment through long-term monitoring. World Conference on Timber Engineering (WCTE), August 22–25, Vienna, Austria.
  • Steiger, R., Feltrin, G., Weber, F., Nerbano, S., & Motavalli, M. (2016). On-site dynamic testing of a light-frame timber building. World Conference on Timber Engineering (WCTE), August 22-25, Vienna, Austria.
  • Stenson, J., Ishaq, S. L., Laguerre, A., Loia, A., MacCrone, G., Mugabo, I., …  Van Den Wymelenberg, K. (2019). Monitored indoor environmental quality of a mass timber office building: A case study. Buildings, 9(6), 142.
  • Tannert, T., Berger, R., Vogel, M., & Müller, A. (2011). Remote moisture monitoring of timber bridges: A case study, 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-5), Cancún, México, 11–15 December.
  • Togni, M., Uzielli, L., Venturi, N., & Bronzi, A. (2007). The historic timber roof of “Giordano’s Warehouse” in Vallombrosa: Design, story and collapse. ICOMOS IWC – XVI International Symposium – Florence, Venice and Vicenza, 11th–16th November.
  • Turner, J. A., Buongiorno, J., Maplesden, F., Zhu, S., Bates, S., & Li, R. (2006). World wood industries outlook: 2005–2030. Forest Research Bulletin 230. Ensis, Rotorua, New Zealand. 84 p.
  • Ugalde, D., Almazán, J. L., Santa María, H., & Guindos, P. (2019). Seismic protection technologies for timber structures: A review. European Journal of Wood and Wood Products, 77(2), 173–194.
  • Wacker, J. P. (2010). Use of wood in buildings and bridges. Chapter 17. Wood Handbook – Wood as an engineering material: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory. Madison, WI.
  • Wang, J. (2016). Vertical movement monitoring in six-storey wood-frame building in British Columbia. A report by FPInnovations, Canada.
  • Wang, J., Karsh, E., Finch, G., & Chen, M. (2016). Field measurement of vertical movement and roof moisture performance of the wood innovation and design centre, World Conference on Timber Engineering (WCTE), August 22–25, Vienna, Austria.
  • Wang, J., & Ni, C. (2014). Monitoring of vertical movement in a 5-storey wood frame building in coastal British Columbia. World Conference on Timber Engineering (WCTE), Quebec City, Canada, August 10-14.
  • Wang, X., Teder, M., & Wacker, J. (2013). Condition assessment of the timber structures of a century-old industrial building using a nondestructive inspection procedure. Advanced Materials Research, 778, 840–848.
  • Winter, S., & Kreuzinger, H. (2008). The bad Reichenhall ice-arena collapse and the necessary consequences for wide span timber structures. The 10th World Conference on Timber Engineering, 2–5 June, Miyazaki, Japan.
  • Wipf, T. J., Phares, B., Bigelow, J., Wood, D. L., & Ritter, M. (2004). Dynamic field performance of timber bridges. Final Report: Summary and Conclusions, Iowa State University.
  • Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology: Decay and its prevention. A book published by Elsevier Science & Technology.
  • Zelinka, S. L., Kordziel, S., Pei, S., Glass, S. V., & Tabares-Velasco, P. C. (2018). Moisture monitoring throughout the construction and occupancy of mass timber buildings. 1st International Conference on New Horizons in Green Civil Engineering (NHICE-01), Victoria, BC, Canada, April 25–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.