296
Views
9
CrossRef citations to date
0
Altmetric
Articles

Detection of defects in building walls using modified OptD method for down-sampling of point clouds

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 197-215 | Received 23 Sep 2019, Accepted 10 Feb 2020, Published online: 09 Mar 2020

References

  • Alkadri, M. F., Turrin, M., & Sariyildiz, S. (2019). A computational workflow to analyse material properties and solar radiation of existing contexts from attribute information of point cloud data. Building and Environment, 155, 268–282. doi: 10.1016/j.buildenv.2019.03.057
  • Armesto-González, J., Riveiro-Rodríguez, B., González-Aguilera, D., & Rivas-Brea, M. T. (2010). Terrestrial laser scanning intensity data applied to damage detection for historical buildings. Journal of Archaeological Science, 37(12), 3037–3047. doi: 10.1016/j.jas.2010.06.031
  • Błaszczak-Bąk, W., Koppanyi, Z., & Toth, C. (2018). Reduction method for mobile laser scanning data. ISPRS International Journal of Geo-Information, 7(7), 1–13. doi: 10.3390/ijgi7070285
  • Błaszczak-Bąk, W., Sobieraj-Żłobińska, A., & Kowalik, M. (2017). The OptD-multi method in LiDAR processing. Measurement Science and Technology, 28(7), 7500–7509. doi: 10.1088/1361-6501/aa7444
  • Chen, S., Tian, D., Feng, C., Vetro, A., & Kovačević, J. (2018). Fast resampling of three-dimensional point clouds via graphs. IEEE Transactions on Signal Processing, 66(3), 666–681. doi: 10.1109/TSP.2017.2771730
  • Chiu, C. K., & Lin, Y. F. (2014). Multi-objective decision-making supporting system of maintenance strategies for deteriorating reinforced concrete buildings. Automation in Construction, 39, 15–31. doi: 10.1016/j.autcon.2013.11.005
  • Costa-Jover, A., Lluis i Ginovart, J., Coll-Pla, S., & López Piquer, M. (2019). Using the terrestrial laser scanner and simple methodologies for geometrically assessing complex masonry vaults. Journal of Cultural Heritage, 36, 247–254. doi: 10.1016/j.culher.2018.10.003
  • Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2), 112–122. doi: 10.3138/FM57-6770-U75U-7727
  • Erdélyi, J., Kopacik, A., & Kyrinovič, P. (2018). Construction control and documentation of facade elements using terrestrial laser scanning. Applied Geomatics, 10(2), 113–121. doi: 10.1007/s12518-018-0208-4
  • Gerke, M., & Xiao, J. (2014). Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 78–92. doi: 10.1016/j.isprsjprs.2013.10.011
  • González-Jorge, H., Gonzalez-Aguilera, D., Rodriguez-Gonzalvez, P., & Arias, P. (2012). Monitoring biological crusts in civil engineering structures using intensity data from terrestrial laser scanners. Construction and Building Materials, 31, 119–128. doi: 10.1016/j.conbuildmat.2011.12.053
  • Gruen, A., Behnisch, M., & Kohler, N. (2009). Perspectives in the reality-based generation, nD modelling, and operation of buildings and building stocks. Building Research and Information, 37(5–6), 503–519. doi: 10.1080/09613210903189509
  • Herrera, L. K., Le Borgne, S., & Videla, H. A. (2009). Modern methods for materials characterization and surface analysis to study the effects of biodeterioration and weathering on buildings of cultural heritage. International Journal of Architectural Heritage, 3, 74–91. doi: 10.1080/15583050802149995
  • Honti, R., Erdélyi, J., & Kopacik, A. (2018). Plane segmentation from point clouds. Pollack Periodica, 13(2), 159–171. doi: 10.1556/606.2018.13.2.16
  • Höfle, B., & Pfeifer, N. (2007). Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 62(6), 415–433. doi: 10.1016/j.isprsjprs.2007.05.008
  • Hu, H., Fernandez-Steeger, T. M., Dong, M., & Azzam, R. (2012). Numerical modeling of LiDAR-based geological model for landslide analysis. Automation in Construction, 24, 184–193. doi: 10.1016/j.autcon.2012.03.001
  • Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A., & Kukko, A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing, 3(10), 2207–2221. doi: 10.3390/rs3102207
  • Kaasalainen, S., Niittymäki, H., Krooks, A., Koch, K., Kaartinen, H., Vain, A., & Hyyppä, H. (2010). Effect of target moisture on laser scanner intensity. IEEE Transactions on Geoscience and Remote Sensing, 48(4), 2128–2136. doi: 10.1109/TGRS.2009.2036841
  • Kashani, A. G., Olsen, M. J., Parrish, C. E., & Wilson, N. (2015). A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration. Sensors, 15(11), 1–31. doi: 10.3390/s151128099
  • Kukko, A., Anttila, K., Manninen, T., Kaasalainen, S., & Kaartinen, H. (2013). Snow surface roughness from mobile laser scanning data. Cold Regions Science and Technology, 96, 23–35. doi: 10.1016/j.coldregions.2013.09.001
  • Lai, X., Yuan, Y., Li, Y., & Wang, M. (2019). Full-waveform LiDAR point clouds classification based on wavelet support vector machine and ensemble learning. IEEE Sensors Journal, 19(14), 1–14. doi: 10.1109/JSEN.2019.2912683
  • Lin, Y.-J., Benziger, R. R., & Habib, A. (2016). Planar-based adaptive down-sampling of point clouds. Photogrammetric Engineering & Remote Sensing, 82(12), 955–966. doi: 10.14358/PERS.82.12.955
  • Maglo, A., Lavoue, G., Dupont, F., & Hudelot, C. (2015). 3D mesh compression: Survey, comparisons, and emerging trends. ACM Computing Surveys, 47(3), 1–41. doi: 10.1145/2693443
  • Mancini, F., Castagnetti, C., Rossi, P., Dubbini, M., Fazio, N. L., Perrotti, M., & Lollino, P. (2017). An integrated procedure to assess the stability of coastal rocky cliffs: From UAV close-range photogrammetry to geomechanical finite element modeling. Remote Sensing, 9(1235), 1–24. doi: 10.3390/rs9121235
  • Martínez, J., Soria-Medina, A., Arias, P., & Buffara-Antunes, A. F. (2012). Automatic processing of terrestrial laser scanning data of building façades. Automation in Construction, 22, 298–305. doi: 10.1016/j.autcon.2011.09.005
  • Martínez-Carricondo, P., Carvajal-Ramírez, F., Yero-Paneque, L., & Agüera-Vega, F. (2019). Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Building Research and Information, 48(2), 140–159. doi: 10.1080/09613218.2019.1626213
  • Pajak, K., & Blaszczak-Bak, W. (2019). Baltic sea level changes from satellite altimetry data based on the OptD method. Acta Geodynamica et Geomaterialia, 16(3), 235–244. doi: 10.13168/AGG.2019.0019
  • Peng, J., Kim, C. S., & Kuo, C. C. J. (2005). Technologies for 3D mesh compression: A survey. Journal of Visual Communication and Image Representation, 16(6), 688–733. doi: 10.1016/j.jvcir.2005.03.001
  • Pesci, A., & Teza, G. (2008). Effects of surface irregularities on intensity data from laser scanning: An experimental approach. Annals of Geophysics, 51(5/6), 839–848. doi: 10.4401/ag-4462
  • Prieto, A. J., Vásquez, V., Silva, A., Horn, A., Alejandre, F. J., & Macías-Bernal, J. M. (2019). Protection value and functional service life of heritage timber buildings. Building Research and Information, 47(5), 567–584. doi: 10.1080/09613218.2017.1404827
  • Riveiro, B., Morer, P., Arias, P., & De Arteaga, I. (2011). Terrestrial laser scanning and limit analysis of masonry arch bridges. Construction and Building Materials, 25(4), 1726–1735. doi: 10.1016/j.conbuildmat.2010.11.094
  • Sánchez-Aparicio, L. J., Del Pozo, S., Ramos, L. F., Arce, A., & Fernandes, F. M. (2018). Heritage site preservation with combined radiometric and geometric analysis of TLS data. Automation in Construction, 85, 24–39. doi: 10.1016/j.autcon.2017.09.023
  • Sankaranarayanan, J., Samet, H., & Varshney, A. (2007). A fast all nearest neighbor algorithm for applications involving large point-clouds. Computers and Graphics, 31(2), 157–174. doi: 10.1016/j.cag.2006.11.011
  • Silva, A., Neves, L. C., Gaspar, P. L., & De Brito, J. (2016). Probabilistic transition of condition: Render facades. Building Research and Information, 44(3), 301–318. doi: 10.1080/09613218.2015.1023645
  • Stateczny, A., Błaszczak-Bak, W., Sobieraj-Złobińska, A., Motyl, W., & Wisniewska, M. (2019). Methodology for processing of 3D multibeam sonar big data for comparative navigation. Remote Sensing, 11(19), 1–23. doi: 10.3390/rs11192245
  • Suchocki, C., & Błaszczak-Bąk, W. (2019). Down-sampling of point clouds for the technical diagnostics of buildings and structures. Geosciences, 9(2), 1–14. doi: 10.3390/geosciences9020070
  • Suchocki, C., & Katzer, J. (2018). Terrestrial laser scanning harnessed for moisture detection in building materials – problems and limitations. Automation in Construction, 94, 127–134. doi: 10.1016/j.autcon.2018.06.010
  • Suchocki, C., Katzer, J., & Panuś, A. (2017). Remote sensing to estimate saturation differences of chosen building materials using terrestrial laser scanner. Reports on Geodesy and Geoinformatics, 103(1), 94–105. doi: 10.1515/rgg-2017-0008
  • Tan, K., & Cheng, X. (2017). Specular reflection effects elimination in terrestrial laser scanning intensity data using Phong model. Remote Sensing, 9(8), 1–15. doi: 10.3390/rs9080853
  • Teza, G., Galgaro, A., Zaltron, N., & Genevois, R. (2007). Terrestrial laser scanner to detect landslide displacement fields: A new approach. International Journal of Remote Sensing, 28(5), 3425–3446. doi: 10.1080/01431160601024234
  • Valença, J., Puente, I., Júlio, E., González-Jorge, H., & Arias-Sánchez, P. (2017). Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Construction and Building Materials, 146, 668–678. doi: 10.1016/j.conbuildmat.2017.04.096
  • Visvalingam, M., & Whyatt, J. D. (1993). Line generalisation by repeated elimination of points. The Cartographic Journal. doi: 10.1179/000870493786962263
  • Voegtle, T., Schwab, I., & Landes, T. (2008). Influences of different materials on the measurements of a terrestrial laser scanner (TLS). Proceedings of the XXI ISPRS Congress. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, pp. 1061–1066. Part B5. Beijing.
  • Xu, T., Xu, L., Li, X., & Yao, J. (2018). Detection of water leakage in underground tunnels using corrected intensity data and 3D point cloud of terrestrial laser scanning. IEEE Access, XX, 1–9. doi: 10.1109/ACCESS.2018.2889501
  • Xu, T., Xu, L., Yang, B., Li, X., & Yao, J. (2017). Terrestrial laser scanning intensity correction by piecewise fitting and overlap-driven adjustment. Remote Sensing, 9(11), 1–16. doi: 10.3390/rs9111090
  • Zhang, S., Liu, Z., Zhang, X., Shi, G., & Cai, Y. (2015). A method for AIS track data compression based on Douglas-Peucker algorithm. Journal of Harbin Engineering University, 36(5), 595–599. doi: 10.3969/j.issn.1006-7043.201401013
  • Zhao, L., & Shi, G. (2018). A method for simplifying ship trajectory based on improved Douglas–Peucker algorithm. Ocean Engineering, 166, 37–46. doi: 10.1016/j.oceaneng.2018.08.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.