1,029
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Physiological sensing-driven personal thermal comfort modelling in consideration of human activity variations

& ORCID Icon
Pages 512-524 | Received 20 Mar 2020, Accepted 16 Oct 2020, Published online: 14 Nov 2020

References

  • Ala-Juusela, M., & Shukuya, M. (2014). Human body exergy consumption and thermal comfort of an office worker in typical and extreme weather conditions in Finland. Energy and Buildings, 76, 249–257. https://doi.org/10.1016/J.ENBUILD.2014.02.067
  • Alfano, F. R. d., Palella, B. I., & Riccio, G. (2011). The role of measurement accuracy on the thermal environment assessment by means of PMV index. Building and Environment, 46(7), 1361–1369. https://doi.org/10.1016/j.buildenv.2011.01.001
  • ANSI/ASHRAE. (2013). ASHRAE Standard 55: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.
  • Brager, G., Zhang, H., & Arens, E. (2015). Evolving opportunities for providing thermal comfort. Building Research and Information, 43(3), 274–287. https://doi.org/10.1080/09613218.2015.993536
  • Charkoudian, N. (2003, May 1). Skin blood flow in adult human thermoregulation: How it works, when it does not, and why. Mayo Clinic Proceedings, Elsevier. https://doi.org/10.4065/78.5.603
  • Choi, J.-H., Loftness, V., & Lee, D.-W. (2012). Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Building and Environment, 50, 165–175. https://doi.org/10.1016/J.BUILDENV.2011.10.009
  • Daum, D., Haldi, F., & Morel, N. (2011). A personalized measure of thermal comfort for building controls. Building and Environment, 46(1), 3–11. https://doi.org/10.1016/J.BUILDENV.2010.06.011
  • Edelberg, R. (1972). Electrical activity of the skin: Its measurement and uses in psychophysiology. Handbook of Psychophysiology, 12, 1011. http://ci.nii.ac.jp/naid/10026672335/en/
  • Empatica. (2018). E4 wristband user’s manual. Retrieved December 12, 2019, from https://www.empatica.com/get-started-e4
  • Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal Comfort. Analysis and Applications in Environmental Engineering.
  • Gagge, A. P., Stolwijk, J. A. J., & Hardy, J. D. (1967). Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environmental Research, 1(1), 1–20. https://doi.org/10.1016/0013-9351(67)90002-3
  • Gerrett, N., Redortier, B., Voelcker, T., & Havenith, G. (2013). A comparison of galvanic skin conductance and skin wettedness as indicators of thermal discomfort during moderate and high metabolic rates. Journal of Thermal Biology, 38(8), 530–538. https://doi.org/10.1016/j.jtherbio.2013.09.003
  • Gerrior, S., Juan, W., & Peter, B. (2006). An easy approach to calculating estimated energy requirements. Preventing Chronic Disease, 3, 4.
  • González-Alonso, J. (2012). Human thermoregulation and the cardiovascular system. Experimental Physiology, 97(3), 340–346. https://doi.org/10.1113/expphysiol.2011.058701
  • Goto, T., Toftum, J., de Dear, R., & Fanger, P. O. (2006). Thermal sensation and thermophysiological responses to metabolic step-changes. International Journal of Biometeorology, 50(5), 323–332. https://doi.org/10.1007/s00484-005-0016-5
  • Hasan, M. H., Alsaleem, F., & Rafaie, M. (2016). Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Building and Environment, 110, 173–183. https://doi.org/10.1016/j.buildenv.2016.10.007
  • Humphreys, M. A., & Fergus Nicol, J. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 34(6), 667–684. https://doi.org/10.1016/S0378-7788(02)00018-X
  • ISO. (2004). 8996: 2004 Ergonomics of the thermal environment – determination of metabolic rate.
  • Ji, W., Luo, M., Cao, B., Zhu, Y., Geng, Y., & Lin, B. (2018). A new method to study human metabolic rate changes and thermal comfort in physical exercise by CO2 measurement in an airtight chamber. Energy and Buildings, 177, 402–412. https://doi.org/10.1016/J.ENBUILD.2018.08.018
  • Kim, J., Schiavon, S., & Brager, G. (2018). Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control. Building and Environment, 132, 114–124. https://doi.org/10.1016/j.buildenv.2018.01.023
  • Lan, L., Xia, L., Tang, J., Wyon, D. P., & Liu, H. (2019). Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation. Building and Environment, 162, 106292. https://doi.org/10.1016/J.BUILDENV.2019.106292
  • Li, D., Menassa, C. C., & Kamat, V. R. (2017). Personalized human comfort in indoor building environments under diverse conditioning modes. Building and Environment, 126, 304–317. https://doi.org/10.1016/j.buildenv.2017.10.004
  • Liu, S., Schiavon, S., Das, H. P., Jin, M., & Spanos, C. J. (2019). Personal thermal comfort models with wearable sensors. Building and Environment, 162, 106281. https://doi.org/10.1016/j.buildenv.2019.106281
  • Luo, M., Wang, Z., Ke, K., Cao, B., Zhai, Y., & Zhou, X. (2018). Human metabolic rate and thermal comfort in buildings: The problem and challenge. Building and Environment. https://doi.org/10.1016/j.buildenv.2018.01.005
  • Luo, M., Zhou, X., Zhu, Y., & Sundell, J. (2016). Revisiting an overlooked parameter in thermal comfort studies, the metabolic rate. Energy and Buildings, 118, 152–159. https://doi.org/10.1016/J.ENBUILD.2016.02.041
  • McCarthy, C., Pradhan, N., Redpath, C., & Adler, A. (2016, May 29–31). Validation of the Empatica E4 wristband. 2016 IEEE EMBS International Student Conference: Expanding the Boundaries of Biomedical Engineering and Healthcare, ISC 2016 – Proceedings, Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/EMBSISC.2016.7508621
  • Na, H., Choi, J.-H., Kim, H., & Kim, T. (2019). Development of a human metabolic rate prediction model based on the use of Kinect-camera generated visual data-driven approaches. Building and Environment, 160, 106216. https://doi.org/10.1016/j.buildenv.2019.106216
  • Nicol, J. F., & Roaf, S. (2017). Rethinking thermal comfort. Building Research & Information, 45(7), 711–716. https://doi.org/10.1080/09613218.2017.1301698
  • Nkurikiyeyezu, K. N., Suzuki, Y., Tobe, Y., Lopez, G. F., & Itao, K. (2017, September 19–22). Heart rate variability as an indicator of thermal comfort state. 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), IEEE, 1510–1512.
  • Parkinson, T., de Dear, R., & Candido, C. (2016). Thermal pleasure in built environments: Alliesthesia in different thermoregulatory zones. Building Research & Information, 44(1), 20–33. https://doi.org/10.1080/09613218.2015.1059653
  • Pazhoohesh, M. (2017). Occupancy-driven intelligent control of HVAC based on thermal comfort occupancy-driven intelligent control of HVAC based on thermal comfort. The University of Liverpool.
  • Schweiker, M., Fuchs, X., Becker, S., Shukuya, M., Dovjak, M., Hawighorst, M., & Kolarik, J. (2017). Challenging the assumptions for thermal sensation scales. Building Research & Information, 45(5), 572–589. https://doi.org/10.1080/09613218.2016.1183185
  • Shan, C., Hu, J., Wu, J., Zhang, A., Ding, G., & Xu, L. X. (2020). Towards non-intrusive and high accuracy prediction of personal thermal comfort using a few sensitive physiological parameters. Energy and Buildings, 207, 109594. https://doi.org/10.1016/J.ENBUILD.2019.109594
  • Tabak, V., & de Vries, B. (2010). Methods for the prediction of intermediate activities by office occupants. Building and Environment, 45(6), 1366–1372. https://doi.org/10.1016/j.buildenv.2009.11.018
  • Wang, Z., de Dear, R., Luo, M., Lin, B., He, Y., Ghahramani, A., & Zhu, Y. (2018). Individual difference in thermal comfort: A literature review. Building and Environment, 138, 181–193. https://doi.org/10.1016/J.BUILDENV.2018.04.040
  • Zhu, H., Wang, H., Liu, Z., Li, D., Kou, G., & Li, C. (2018). Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. Science of The Total Environment, 616–617, 1124–1133. https://doi.org/10.1016/J.SCITOTENV.2017.10.208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.