1,955
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The actual performance of retrofitted residential apartments: post-occupancy evaluation study in Italy

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 411-429 | Received 27 Jun 2022, Accepted 29 Aug 2022, Published online: 19 Sep 2022

References

  • Adekunle, T. O., & Nikolopoulou, M. (2016). Thermal comfort, summertime temperatures and overheating in prefabricated timber housing. Building and Environment, 103, 21–35. https://doi.org/10.1016/j.buildenv.2016.04.001
  • Adekunle, T. O., & Nikolopoulou, M. (2020). Post-occupancy evaluation on people’s perception of comfort, adaptation and seasonal performance of sustainable housing: A case study of three prefabricated structural timber housing developments. Intelligent Buildings International, 12(2), 71–99. https://doi.org/10.1080/17508975.2018.1493677
  • Altan, H., Refaee, M., Han, L., & Noguchi, M. (2013). Measured home environment and energy consumption compared to accepted standards. Open House International, 38(3), 64–72. https://doi.org/10.1108/OHI-03-2013-B0009
  • Altomonte, S., Schiavon, S., Kent, M. G., & Brager, G. (2019). Indoor environmental quality and occupant satisfaction in green-certified buildings. Building Research & Information, 47(3), 255–274. https://doi.org/10.1080/09613218.2018.1383715
  • Altomonte, S., Allen, J., Bluyssen, P. M., Brager, G., Heschong, L., Loder, A., Schiavon, S., Veitch, J. A., Wang, L., & Wargocki, P. (2020). Ten questions concerning well-being in the built environment. Building and Environment, 180. https://doi.org/10.1016/j.buildenv.2020.106949
  • Amasuomo, T. T., & Amasuomo, J. O. (2016). Perceived thermal discomfort and stress behaviours affecting students’ learning in lecture theatres in the humid tropics. Buildings, 6(2), 1–17. https://doi.org/10.3390/buildings6020018
  • Ascione, F., Bianco, N., De Masi, R. F., Mastellone, M., Mauro, G. M., & Vanoli, G. P. (2020). The role of the occupant behavior in affecting the feasibility of energy refurbishment of residential buildings: Typical effective retrofits compromised by typical wrong habits. Energy and Buildings, 223(2020), 110217. https://doi.org/10.1016/j.enbuild.2020.110217
  • ASHRAE. (2010). ANSI/ASHRAE standard 55-2010: Thermal environmetnal conditions for human occupancy. International Journal of Refrigeration, 40. https://linkinghub.elsevier.com/retrieve/pii/0140700779901142
  • ASHRAE. (2017). ANSI/ASHRAE standard 55-2017 : Thermal environmental conditions for human occupancy. ASHRAE Inc., 2017, 66. https://www.techstreet.com/ashrae/standards/ashrae-55-2017?product_id=1994974#jumps
  • ASHRAE. (2017). ANSI/ASHRAE Standard 55-2017 : Thermal Environmental Conditions for Human Occupancy. ASHRAE Inc., 2017, 62. https://www.techstreet.com/ashrae/standards/ashrae-55-2017?product_id=1994974#jumps
  • Aste, N., Adhikari, R. S., Buzzetti, M., Del Pero, C., Huerto-Cardenas, H. E., Leonforte, F., & Miglioli, A. (2020). nZEB: Bridging the gap between design forecast and actual performance data. Energy and Built Environment, October. https://doi.org/10.1016/j.enbenv.2020.10.001
  • Attia, S. (2020). Spatial and behavioral thermal adaptation in net zero energy buildings : An exploratory investigation. Sustainability, September. https://doi.org/10.3390/su12197961
  • Basili, R., Colasuonno, L., Hugony, F., Pagliaro, F., Marani, M., Matera, M., Zanghirella, F., Martino, A., Murano, G., Nidasio, R., & Panvini, A. (2020). Rapporto annuale 2020, certificazione energetica degli edifici. https://www.enea.it/it/seguici/events/rapportoape_2020/ENEA-CTI
  • Baughman, A. V., & Arens, E. A. (1996). Indoor humidity and human health – Part I: Literature review of health effects of humidity-influenced indoor pollutants. ASHRAE Transactions, 102(1), 193–211.
  • Belussi, L., Barozzi, B., Bellazzi, A., Danza, L., Devitofrancesco, A., Fanciulli, C., Ghellere, M., Guazzi, G., Meroni, I., Salamone, F., Scamoni, F., & Scrosati, C. (2019). A review of performance of zero energy buildings and energy efficiency solutions. Journal of Building Engineering, 25(December 2018), 100772. https://doi.org/10.1016/j.jobe.2019.100772
  • Berge, M., & Mathisen, H. M. (2016). Perceived and measured indoor climate conditions in high-performance residential buildings. Energy and Buildings, 127, 1057–1073. https://doi.org/10.1016/j.enbuild.2016.06.061
  • Boriani, A., Cariani, W., & Romani, R. (2020). Guida pratica alla ristrutturazione e riqualificazione energetica degli edifici per Amministratori di Condominio. https://www.enea.it/it/seguici/pubblicazioni/edizioni-enea/2020/guida-pratica-per-gli-amministratori-di-condominio
  • British Standards Institution (BSI). (2015). Briefing for design and construction-Part 1: Code of practice for facilities management (Buildings infrastructure). BSI Standards Publication.
  • Casaclima. (2022). Classi CasaClima. https://www.agenziacasaclima.it/it/certificazione-edifici/classi-casaclima-1409.html
  • CasaClima. (n.d.). CasaClima. Retrieved December 12, 2021, from https://www.agenziacasaclima.it/en/welcome-1.html
  • Cheung, T., Schiavon, S., Parkinson, T., Li, P., & Brager, G. (2019). Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 153(December 2018), 205–217. https://doi.org/10.1016/j.buildenv.2019.01.055
  • CIBSE. (2015). Guide A: Environmental design (CIBSE Guide A: Environmental Design). Chartered Institution of Building Services Engineers. https://www.cibse.org/knowledge/knowledge-items/detail?id=a0q20000008I79JAAS
  • Coggins, A. M., Wemken, N., Mishra, A. K., Sharkey, M., Horgan, L., Cowie, H., Bourdin, E., & McIntyre, B. (2022). Indoor air quality, thermal comfort and ventilation in deep energy retrofitted Irish dwellings. Building and Environment, 219(April), 109236. https://doi.org/10.1016/j.buildenv.2022.109236
  • Costanzo, E., Martino, A., Varalda, G. M., Antinucci, M., & Federici, A. (2018). EPBD implementation in Italy- Status in December 2016. www.ciriesco.it/it
  • Cuerda, E., Guerra-Santin, O., Sendra, J. J., & Neila, F. J. (2020). Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models. Energy and Buildings, 209, 109688. https://doi.org/10.1016/j.enbuild.2019.109688
  • Dartevelle, O., van Moeseke, G., Mlecnik, E., & Altomonte, S. (2021). Long-term evaluation of residential summer thermal comfort: Measured vs. perceived thermal conditions in nZEB houses in Wallonia. Building and Environment, 190, 107531. https://doi.org/10.1016/j.buildenv.2020.107531
  • DATAQ. (2021). DATAQ. https://www.dataq.com/products/lascar/el-usb/el-usb-2-lcd-data-logger.html
  • Dawe, M. (2019). Field evaluation of occupant satisfaction and energy performance in eight LEED-certified buildings using radiant systems. 0–28.
  • de Dear, R. J., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1), 1–18.
  • de Dear, R., Xiong, J., Kim, J., & Cao, B. (2020). A review of adaptive thermal comfort research since 1998. Energy and Buildings, 214, 109893. https://doi.org/10.1016/j.enbuild.2020.109893
  • Djamila, H., Ming, C. C., & Kumaresan, S. (2015). Investigation on hourly and monthly thermal comfort in the humid tropics of Malaysia. Buildings, 5(3), 1025–1036. https://doi.org/10.3390/buildings5031025
  • Dolzani, C., Bancher, M., Brauer, I. M., & Klammsteiner, U. (2021). Casaclima R: A protocol for energy refurbishment supported by verification tools. IOP Conference Series: Earth and Environmental Science, 863(1). https://doi.org/10.1088/1755-1315/863/1/012038
  • DPR nr. 74, 16 aprile 2013. (2013). Decreto del presidente della repubblica 16 aprile 2013, n. 62. https://www.cti2000.eu/app/download/8100476785/2013 - D.P.R. 16 aprile 2013, n. 74.zip?t=1476903339
  • DW. (2021). EU agrees on tougher climate goals for 2030. https://www.dw.com/en/eu-agrees-on-tougher-climate-goals-for-2030/a-55901612#:~:text=European Commission President Ursula von,emissions by 55%25 by 2030.&text = EU leaders agreed on Friday,to 1990 levels by 2030
  • EC. (2020). Energy efficiency in buildings. Energy Efficiency Research, February. https://doi.org/10.1016/b978-0-12-822989-7.00016-0
  • EC. (2021). Directive of the European Parliament and of the Council on Energy Efficiency (recast). 0203(July), 1–23. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021PC0558&from=EN
  • Episcope. (2014). Inclusion of new buildings in residential building typologies: Steps towards NZEBs exemplified for different European countries (Issue 1). http://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_SR1_NewBuildingsInTypologies.pdf
  • Europe, I. central. (2018). Report on NZEB initiatives from the central Europe region. https://www.interreg-central.eu/Content.Node/DT111.pdf
  • European Parliament, C. of the E. U. (2018). Directive (EU) 2018/844 of the European parliament and of the council of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and Directive. https://doi.org/10.2016/0381/COD
  • Eurostat. (2020). Housing in Europe, Statistics visulasied-2020 edition. In Housing in Europe. https://doi.org/10.2785/713237
  • Eurostat. (2021). Energy consumption in households. https://ec.europa.eu/eurostat/statistics-explained/index.php?title = Energy_consumption_in_households
  • eurostat. (2022). Energy prices on the rise in the euro area in 2021. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20220210-2
  • Fabbri, K. (2015). Indoor thermal comfort perception. In Indoor thermal comfort perception. Springer International. https://doi.org/10.1007/978-3-319-18651-1
  • Fabbri, K., & Tronchin, L. (2011). Thermal comfort and EPB in residential building: A commented case study in Ravenna, Italy. Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, 1154–1160.
  • Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal Comfort. Analysis and Applications in Environmental Engineering, 244. https://www.cabdirect.org/cabdirect/abstract/19501100562
  • Fanger, P. O., & Others. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal Comfort. Analysis and Applications in Environmental Engineering.
  • Guerra Santin, O. (2013). Occupant behaviour in energy efficient dwellings: Evidence of a rebound effect. Journal of Housing and the Built Environment, 28(2), 311–327. https://doi.org/10.1007/s10901-012-9297-2
  • Guerra-Santin, O., Romero Herrera, N., Cuerda, E., & Keyson, D. (2016). Mixed methods approach to determine occupants’ behaviour – analysis of two case studies. Energy and Buildings, 130, 546–566. https://doi.org/10.1016/j.enbuild.2016.08.084
  • GUM. (2008). Evaluation of measurement data – guide to the expression of uncertainty in measurement. International Organization for Standardization Geneva ISBN, 50(September), 134. http://www.bipm.org/en/publications/guides/gum.html
  • Gupta, R., & Kapsali, M. (2016). Empirical assessment of indoor air quality and overheating in low-carbon social housing dwellings in England, UK. Advances in Building Energy Research, 10(1), 46–68. https://doi.org/10.1080/17512549.2015.1014843
  • Harvie-Clark, J., Conlan, N., Wei, W., & Siddall, M. (2019). How loud is too loud? noise from domestic mechanical ventilation systems. International Journal of Ventilation, 18(4), 303–312. https://doi.org/10.1080/14733315.2019.1615217
  • Heinzerling, D., Schiavon, S., Webster, T., & Arens, E. (2013). Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Building and Environment, 70, 210–222. https://doi.org/10.1016/j.buildenv.2013.08.027
  • Hong, T., Yan, D., D’Oca, S., & Chen, C. f. (2017). Ten questions concerning occupant behavior in buildings: The big picture. Building and Environment, 114, 518–530. https://doi.org/10.1016/j.buildenv.2016.12.006
  • Humphreys, M. A., Fergus Nicol, J., & Raja, I. A. (2007). Field studies of indoor thermal comfort and the progress of the adaptive approach. Advances in Building Energy Research, 1(1), 55–88. https://doi.org/10.1080/17512549.2007.9687269
  • Iorio, G., & Federici, A. (2021). Energy efficiency trends and policies in Italy. November 2012, 1–37. https://www.odyssee-mure.eu/publications/national-reports/energy-efficiency-italy.pdf
  • ISO 7726. (2001). Ergonomics of the thermal environment – instruments for measuring physical quantities. In Bs En Iso 7726:2001 (Issue 1).
  • Jones, L. (2022). Five ways the Ukraine war could push up prices. BBC. https://www.bbc.com/news/business-60509453
  • Jones, R. V., Fuertes, A., & Lomas, K. J. (2015). The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings. Renewable and Sustainable Energy Reviews, 43, 901–917. https://doi.org/10.1016/j.rser.2014.11.084
  • Jones, R. V., Goodhew, S., & De Wilde, P. (2016). Measured indoor temperatures, thermal comfort and overheating risk: Post-occupancy evaluation of low energy houses in the UK. Energy Procedia, 88, 714–720. https://doi.org/10.1016/j.egypro.2016.06.049
  • Jowkar, M., Temeljotov-Salaj, A., Lindkvist, C. M., & Støre-Valen, M. (2022). Sustainable building renovation in residential buildings: Barriers and potential motivations in Norwegian culture. Construction Management and Economics, 40(3), 161–172. https://doi.org/10.1080/01446193.2022.2027485
  • Kimpian, J. (2021). Energy, people, buildings : Making sustainasble architecture work (H. Hartman & S. Pelsmakers (eds.)) [Book]. Riba.
  • Köppen. (1980). Köppen climate classification. Wikipedia. https://en.wikipedia.org/wiki/Köppen_climate_classification#Cfa:_Humid_subtropical_climates
  • Leivo, V., & Rantala, J. (2008). Moisture behaviour of slab-on-ground structures in operating conditions: Steady-state analysis. Construction and Building Materials, 22(4), 526–531. https://doi.org/10.1016/j.conbuildmat.2006.11.008
  • Li, P., Froese, T. M., & Brager, G. (2018). Post-occupancy evaluation: State-of-the-art analysis and state-of-the-practice review. Building and Environment, 133(December 2017), 187–202. https://doi.org/10.1016/j.buildenv.2018.02.024
  • Littlewood, J. R., & Smallwood, I. (2017). One year temperature and heat pump performance for a Micro-Community of low Carbon Dwellings, in Wales, UK. Energy Procedia, 111, 387–396. https://doi.org/10.1016/j.egypro.2017.03.200
  • Lollini, R., Pasut, W., & Pistore, L. (2020). Regenerative technologies for the indoor environment. Inspirational guidelines for practitioners (Issue May). www.cost.eu/COST_Actions/ca/CA16114
  • Love, J. A. (2014). Understanding the interactions between occupants, heating systems and building fabric in the context of energy efficient building fabric retrofit in social housing. [UCL (University College London)]. In Doctoral thesis (Issue June). https://discovery.ucl.ac.uk/id/eprint/1433401/
  • Malama, A., & Sharples, S. (1997). Thermal performance of traditional and contemporary housing in the cool season of Zambia. Building and Environment, 32(1), 69–78. https://doi.org/10.1016/S0360-1323(96)00036-4
  • Mansour, A., Bentley, R., Baker, E., Li, A., Martino, E., Clair, A., Daniel, L., Mishra, S. R., Howard, N. J., Phibbs, P., Jacobs, D. E., Beer, A., Blakely, T., & Howden-Chapman, P. (2022). Housing and health: An updated glossary. Journal of Epidemiology and Community Health, 76(9), 833–838. https://doi.org/10.1136/jech-2022-219085
  • Mavrigiannaki, A., Gobakis, K., Kolokotsa, D., Kalaitzakis, K., Pisello, A. L., Piselli, C., Laskari, M., Saliari, M., Assimakopoulos, M.-N., Pignatta, G., Synnefa, A., & Santamouris, M. (2021). Zero energy concept at neighborhood level: A case study analysis. Solar Energy Advances, 1, 100002. https://doi.org/10.1016/j.seja.2021.100002
  • Menezes, A. C., Cripps, A., Bouchlaghem, D., & Buswell, R. (2012). Predicted vs. Actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Applied Energy, 97, 355–364. https://doi.org/10.1016/j.apenergy.2011.11.075
  • Mlecnik, E. (2013). Improving passive house certification: Recommendations based on end-user experiences. Architectural Engineering and Design Management, 9(4), 250–264. https://doi.org/10.1080/17452007.2012.738044
  • Moeller, S., & Bauer, A. (2022). Energy (in) efficient comfort practices : How building retrofits influence energy behaviours in multi-apartment buildings. Energy Policy, 168(July), 113123. https://doi.org/10.1016/j.enpol.2022.113123
  • Mustaffa, W. N. F. W., Ani, A. I. C., Mustafa, N. K. F., Hakim, A., & Nordin, N. (2021). The 100 top cited studies Post Occupancy Evaluation (POE): Trend setting analysis using bibliometic citation approach. Turkish Journal of Physiotherapy and Rehabilitation, 32(3), 4757–4769.
  • Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: Principles and practice. Routledge. https://doi.org/10.4324/9780203123010
  • Nilakshini Wimalasena, N., Chang-Richards, A., I-Kai Wang, K., & Natasha Dirks, K. (2022). What makes a healthy home? A study in Auckland, New Zealand. https://doi.org/10.1080/09613218.2022.2043138
  • Nordquist, B., & Fransson, V. (2015). Insufficient air supply rates in new build apartments with energy efficient ventilation : Including aspects of human perception and behaviour. Healthy Buildings Europe Conference. https://lup.lub.lu.se/search/publication/ec4d3375-2263-490b-b319-8abea1a20fd0
  • Odyssee-Mure. (2021). Italy | Energy profile, March2021, Energy efficiency trends and policies (Issue March). https://www.odyssee-mure.eu/publications/efficiency-trends-policies-profiles/italy.html
  • Partington, R. (2017). Better buildings : Learning from buildings in use.
  • Ribino, P., Bonomolo, M., Lodato, C., & Vitale, G. (2021). A humanoid social robot based approach for indoor environment quality monitoring and well-being improvement. International Journal of Social Robotics, 13(2), 277–296. https://doi.org/10.1007/s12369-020-00638-9
  • Ricciu, R., Galatioto, A., Besalduch, L. A., & Desogus, G. (2017). Uncertainty in the evaluation of the pmv index. The 12th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES2017, 1–17. https://www.researchgate.net/publication/320452142_UNCERTAINTY_IN_THE_EVALUATION_OF_THE_PMV_INDEX/stats
  • Schweiker, M., André, M., Al-Atrash, F., Al-Khatri, H., Alprianti, R. R., Alsaad, H., Amin, R., Ampatzi, E., Arsano, A. Y., Azar, E., Bannazadeh, B., Batagarawa, A., Becker, S., Buonocore, C., Cao, B., Choi, J. H., Chun, C., Daanen, H., Damiati, S. A., … Zomorodian, Z. S. (2020). Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe? Energy and Buildings, 211. https://doi.org/10.1016/j.enbuild.2020.109761
  • Silva, M. F., Maas, S., de Souza, H. A., & Gomes, A. P. (2017). Post-occupancy evaluation of residential buildings in Luxembourg with centralized and decentralized ventilation systems, focusing on indoor air quality (IAQ). Assessment by questionnaires and physical measurements. Energy and Buildings, 148, 119–127. https://doi.org/10.1016/j.enbuild.2017.04.049
  • Sodagar, B., & Starkey, D. (2016). The monitored performance of four social houses certified to the Code for Sustainable Homes Level 5. Energy and Buildings, 110, 245–256. https://doi.org/10.1016/j.enbuild.2015.11.016
  • Sorrell, S., & Dimitropoulos, J. (2008). The rebound effect: Microeconomic definitions, limitations and extensions. Ecological Economics, 65(3), 636–649. https://doi.org/10.1016/j.ecolecon.2007.08.013
  • Stazi, F., Naspi, F., & D’Orazio, M. (2017). A literature review on driving factors and contextual events influencing occupants’ behaviours in buildings. Building and Environment, 118, 40–66. https://doi.org/10.1016/j.buildenv.2017.03.021
  • Sterling, E. M., Arundel, A., & Sterling, T. D. (1985). Criteria or human exposure to humidity in occupied buildings. ASHRAE Transactions, 91, 611–622.
  • Stevenson, F. (2019). Housing fit for purpose : Performance, feedback and learning. RIBA Publishing.
  • Šujanová, P., Rychtáriková, M., Mayor, T. S., & Hyder, A. (2019). A healthy, energy-efficient and comfortable indoor environment, a review. Energies, 12(8), 1–37. https://doi.org/10.3390/en12081414
  • Taptiklis, P., Phipps, R., Jones, M., & Douwes, J. (2022). Associations of house characteristics with indoor dampness and measured moisture: Results from three New Zealand House Condition Surveys in 2005, 2010 and 2015. Building and Environment, 208(July 2021), 108508. https://doi.org/10.1016/j.buildenv.2021.108508
  • Taylor, J. (1997). An introduction to error analysis: The study of uncertainties in physical measurements. Measurement Science and Technology. https://doi.org/10.1088/0957-0233/9/6/022
  • Tinytag. (2022). Tinytag. https://www.geminidataloggers.com/data-loggers/tinytag-ultra-2/tgu-4500#:~:text=The TGU-4500 monitors temperatures,protection such a Stevenson Screen
  • van Kamp, I., Bogers, R., & Jongeneel, R. (2011). Noise in relation to climate change; A first orientation. 40th International Congress and Exposition on Noise Control Engineering 2011, INTER-NOISE 2011, 4, 3751–3758.
  • Vergerio, G., & Becchio, C. (2022). Pursuing occupants’ health and well-being in building management : Definition of new metrics based on indoor air parameters. Building and Environment, 223(July), 109447. https://doi.org/10.1016/j.buildenv.2022.109447
  • Vidal, I. R., Otaegi, J., & Oregi, X. (2020). Thermal comfort in nzeb collective housing in Northern Spain. Sustainability (Switzerland), 12(22), 1–30. https://doi.org/10.3390/su12229630
  • Wang, C., Wang, J., & Norbäck, D. (2022). A systematic review of associations between energy use, fuel poverty, energy efficiency improvements and health. International Journal of Environmental Research and Public Health, 19(12), 7393. https://doi.org/10.3390/ijerph19127393
  • Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 107, 264–278. https://doi.org/10.1016/j.enbuild.2015.08.032
  • Zhao, J., & Carter, K. (2015). Perceived comfort and adaptive process of passivhaus ‘Participants’. Energy Procedia, 83, 121–129. https://doi.org/10.1016/j.egypro.2015.12.202
  • Zhao, Q., Lian, Z., & Lai, D. (2021). Thermal comfort models and their developments: A review. Energy and Built Environment, 2(1), 21–33. https://doi.org/10.1016/j.enbenv.2020.05.007