252
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Multifactorial approach to indoor environmental quality perception of social housing residents in Northern Spain

ORCID Icon, ORCID Icon & ORCID Icon
Pages 392-410 | Received 06 Jul 2022, Accepted 22 Sep 2022, Published online: 12 Oct 2022

References

  • AICIA: Grupo de Termotecnia de la Escuela Superior de Ingenieros Industriales de Sevilla. (2011). Escala de calificación energética para edificios existentes. Instituto Para La Diversificación y Ahorro de La Energía, 144.
  • Alonso, A., Patricio, J., Suárez, R., & Escandón, R. (2020). Acoustical retrofit of existing residential buildings: Requirements and recommendations for sound insulation between dwellings in Europe and other countries worldwide. Building and Environment, 174, 1–13. https://doi.org/10.1016/j.buildenv.2020.106771
  • Andargie, M. S., Touchie, M., & O’Brien, W. (2019). A review of factors affecting occupant comfort in multi-unit residential buildings. Building and Environment, 160, 106182. https://doi.org/10.1016/j.buildenv.2019.106182
  • Ascione, F., Bianco, N., De Masi, R. F., Mastellone, M., Mauro, G. M., & Vanoli, G. P. (2020). The role of the occupant behavior in affecting the feasibility of energy refurbishment of residential buildings: Typical effective retrofits compromised by typical wrong habits. Energy and Buildings, 223, 110217. https://doi.org/10.1016/j.enbuild.2020.110217
  • Asociación Española de Normalización. (2008). UNE-EN 15251:2008 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0041732
  • Atazadeh, B., Halalkhor Mirkalaei, L., Olfat, H., Rajabifard, A., & Shojaei, D. (2021). Integration of cadastral survey data into building information models. Geo-Spatial Information Science, 24(3), 387–402. https://doi.org/10.1080/10095020.2021.1937336
  • Bavaresco, M. V., D’Oca, S., Ghisi, E., & Lamberts, R. (2020). Methods used in social sciences that suit energy research: A literature review on qualitative methods to assess the human dimension of energy use in buildings. Energy and Buildings, 209, 109702. https://doi.org/10.1016/j.enbuild.2019.109702
  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 1–12. https://doi.org/10.1038/sdata.2018.214
  • Bonnefoy, X. (2007). Inadequate housing and health: An overview. International Journal of Environment and Pollution, 30(3–4), 411–429. https://doi.org/10.1504/IJEP.2007.014819
  • Boomsma, C., Pahl, S., Jones, R. V., & Fuertes, A. (2017). “Damp in bathroom. Damp in back room. It’s very depressing!” Exploring the relationship between perceived housing problems, energy affordability concerns, and health and well-being in UK social housing. Energy Policy, 106, 382–393. https://doi.org/10.1016/j.enpol.2017.04.011
  • Brandão, P. I., & Lanzinha, J. C. G. (2021). Thermal comfort assessment during winter season: A case study on Portuguese public social housing. Energies, 14(19), 6184. https://doi.org/10.3390/EN14196184
  • Brasche, S., & Bischof, W. (2005). Daily time spent indoors in German homes – Baseline data for the assessment of indoor exposure of German occupants. International Journal of Hygiene and Environmental Health, 208(4), 247–253. https://doi.org/10.1016/j.ijheh.2005.03.003
  • Bughio, M., Schuetze, T., & Mahar, W. A. (2020). Comparative analysis of indoor environmental quality of architectural campus buildings’ lecture halls and its’ perception by building users, in Karachi, Pakistan. Sustainability, 12(7), 2995. https://doi.org/10.3390/SU12072995
  • Carlota Sáenz de Tejada, C. D., & Laura Hidalgo, M. N. (2021). Vivienda y Salud. Características y condiciones de la vivienda (Diputación de Barcelona (Ed.)). https://llibreria.diba.cat/es/libro/vivienda-y-salud_66385
  • Carpino, C., Mora, D., & De Simone, M. (2019). On the use of questionnaire in residential buildings. A review of collected data, methodologies and objectives. Energy and Buildings, 186, 297–318. https://doi.org/10.1016/j.enbuild.2018.12.021
  • Cuerdo Vilches, T., Oteiza San José, I., & Navas Martín, M. Á. (2020). Proyecto sobre confinamiento social (covid-19), vivienda y habitabilidad [COVID-HAB]. CSIC. https://covidhab.ietcc.csic.es/
  • Day, J. K., Ruiz, S., O’Brien, W., & Schweiker, M. (2020). Seeing is believing: An innovative approach to post-occupancy evaluation. Energy Efficiency, 13(3), 473–486. https://doi.org/10.1007/s12053-019-09817-8
  • Deme Belafi, Z., Hong, T., & Reith, A. (2018). A critical review on questionnaire surveys in the field of energy-related occupant behaviour. Energy Efficiency, 11(8), 2157–2177. https://doi.org/10.1007/s12053-018-9711-z
  • Diagnóstico 2012. La gestión de la vivienda pública de alquiler. (n.d.). Retrieved January 22, 2020, from http://gestorespublicos.org/media/transfer/doc/publicaciones/6f7587500e8c98b618d51657d26c9b48.pdf
  • Diaz Lozano Patiño, E., Vakalis, D., Touchie, M., Tzekova, E., & Siegel, J. A. (2018). Thermal comfort in multi-unit social housing buildings. Building and Environment, 144, 230–237. https://doi.org/10.1016/j.buildenv.2018.08.024
  • D’Oca, S., & Hong, T. (2015). Occupancy schedules learning process through a data mining framework. Energy and Buildings, 88, 395–408. https://doi.org/10.1016/J.ENBUILD.2014.11.065
  • Du, L., Prasauskas, T., Leivo, V., Turunen, M., Pekkonen, M., Kiviste, M., Aaltonen, A., Martuzevicius, D., & Haverinen-Shaughnessy, U. (2015). Assessment of indoor environmental quality in existing multi-family buildings in North-East Europe. Environment International, 79, 74–84. https://doi.org/10.1016/j.envint.2015.03.001
  • Escandón, R., Suárez, R., & Sendra, J. J. (2016). Protocol for the energy behaviour assessment of social housing stock: The case of Southern Europe. Energy Procedia, 96, 907–915. https://doi.org/10.1016/j.egypro.2016.09.164
  • EU Buildings Datamapper Energy. (n.d.). Retrieved June 20, 2022, from https://ec.europa.eu/energy/eu-buildings-datamapper_en
  • EU Buildings Factsheets Energy. (n.d.). Retrieved June 20, 2022, from https://ec.europa.eu/energy/eu-buildings-factsheets_en
  • Observatorio Vasco de la Vivienda / Etxebizitzako Behatokia. (2020). Evaluación rápida política de alquiler 2019. Departamento de Medio Ambiente, Planificación Territorial y Vivienda, Gobierno Vasco. https://www.etxebide.euskadi.eus/contenidos/informacion/ovv_alqu_corta2019/es_ovv_admi/adjuntos/evaluacion_corta_alquiler_2019.pdf
  • Flamant, G., Bustamante, W., Schmitt, C., Bunster, V., & Osorio, C. (2022). Thermal and environmental evaluation of mid-rise social housing retrofit under different climate conditions. Journal of Building Engineering, 46, 103724. https://doi.org/10.1016/J.JOBE.2021.103724
  • Frontczak, M., Andersen, R. V., & Wargocki, P. (2012). Questionnaire survey on factors influencing comfort with indoor environmental quality in Danish housing. Building and Environment, 50, 56–64. https://doi.org/10.1016/j.buildenv.2011.10.012
  • Garay, A., Ruiz, A., & Guevara, J. (2022). Dynamic evaluation of thermal comfort scenarios in a Colombian large-scale social housing project. Engineering, Construction and Architectural Management, 29(5), 1909–1930. https://doi.org/10.1108/ECAM-09-2020-0684
  • Gobierno de España. Ministerio de fomento, Código técnico de la edificación, documento básico HS Salubridad. (2019). https://www.codigotecnico.org/images/stories/pdf/salubridad/DBHS.pdf
  • Godoy-Vaca, L., Vallejo-Coral, E. C., Martínez-Gómez, J., Orozco, M., & Villacreses, G. (2021). Predicted medium vote thermal comfort analysis applying energy simulations with phase change materials for very hot-humid climates in social housing in Ecuador. Sustainability, 13(3), 1257. https://doi.org/10.3390/SU13031257
  • Guerra-Santin, O., Romero Herrera, N., Cuerda, E., & Keyson, D. (2016). Mixed methods approach to determine occupants’ behaviour – Analysis of two case studies. Energy and Buildings, 130, 546–566. https://doi.org/10.1016/j.enbuild.2016.08.084
  • Gutierrez-Avellanosa, D. H., & Bennadji, A. (2015). Analysis of indoor climate and occupants’ behaviour in traditional Scottish dwellings. Energy Procedia, 78, 639–644. https://doi.org/10.1016/j.egypro.2015.11.046
  • Instituto Nacional de Estadística. (2019). Encuesa de Condiciones de Vida. https://www.ine.es/daco/daco42/condivi/ecv_metodo.pdf
  • Ismail, F., Jabar, I. L., Janipha, N. A. I., & Razali, R. (2015). Measuring the quality of life in low cost residential environment. Procedia – Social and Behavioral Sciences, 168, 270–279. https://doi.org/10.1016/j.sbspro.2014.10.232
  • UNE-EN ISO 7730. (2006). Ergonomics of the thermal environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. AENOR. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0037517
  • Jain, N., Burman, E., Stamp, S., Mumovic, D., & Davies, M. (2020). Cross-sectoral assessment of the performance gap using calibrated building energy performance simulation. Energy and Buildings, 224, 110271. https://doi.org/10.1016/j.enbuild.2020.110271
  • Jimenez-Bescos, C., & Oregi, X. (2019). Implementing user behaviour on dynamic building simulations for energy consumption. Environmental and Climate Technologies, 23(3), 308–318. https://doi.org/10.2478/rtuect-2019-0097
  • Jones, R. V., Fuertes, A., Boomsma, C., & Pahl, S. (2015). Space heating preferences in UK social housing: A socio-technical household survey combined with building audits. Energy and Buildings, 127, 382–398. https://doi.org/10.1016/j.enbuild.2016.06.006
  • Kaushik, A., Arif, M., Ebohon, O. J., Arsalan, H., Rana, M. Q., & Obi, L. (2021). Effect of indoor environmental quality on visual comfort and productivity in office buildings. Journal of Engineering, Design and Technology, 1–21. https://doi.org/10.1108/JEDT-09-2021-0474
  • Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11(3), 231–252. https://doi.org/10.1038/sj.jea.7500165
  • Korsavi, S. S., Montazami, A., & Mumovic, D. (2020). The impact of indoor environment quality (IEQ) on school children’s overall comfort in the UK; a regression approach. Building and Environment, 185, 107309. https://doi.org/10.1016/J.BUILDENV.2020.107309
  • Lai, J. H. K., & Yik, F. W. H. (2009). Perception of importance and performance of the indoor environmental quality of high-rise residential buildings. Building and Environment, 44(2), 352–360. https://doi.org/10.1016/j.buildenv.2008.03.013
  • Laskari, M., Karatasou, S., & Santamouris, M. (2016). A methodology for the determination of indoor environmental quality in residential buildings through the monitoring of fundamental environmental parameters: A proposed dwelling Environmental Quality index, Indoor and Built Environment, 26(6), 813–827. https://doi.org/10.1177/1420326X16660175
  • Loga, T., Diefenbach, N., Dascalaki, E. G., & Balaras, C. (2010). Use of building typologies for energy performance assessment of national building stocks. Existent experiences in European countries and common approach: First TABULA synthesis report. In Typology Approach for Building Stock Energy Assessment (Issue June 2009). www.iwu.deIWUordercode01/10
  • Lolli, F., Maria Coruzzolo, A., & Balugani, E. (2022). The indoor environmental quality: A TOPSIS-based approach with indirect elicitation of criteria weights. Safety Science, 148, 105652. https://doi.org/10.1016/J.SSCI.2021.105652
  • Marta, M., & Belinda, L. M. (2017). Simplified model to determine the energy demand of existing buildings. Case study of social housing in Zaragoza, Spain. Energy and Buildings, 149, 483–493. https://doi.org/10.1016/j.enbuild.2017.04.039
  • Martincigh, L., Bianchi, F., Di Guida, M., & Perrucci, G. (2016). The occupants’ perspective as catalyst for less energy intensive buildings. Energy and Buildings, 115, 94–101. https://doi.org/10.1016/j.enbuild.2015.04.018
  • Ministerio de Fomento. (2011). Análisis de las características de la edificación residencial en España en 2011 A nivel nacional y por comunidad autónoma.
  • Ministerio de Fomento. (2022). Código Técnico de la Edificación (CTE) Documento Básico Ahorro de Energia (DB-HE). https://www.codigotecnico.org/DocumentosCTE/AhorroEnergia.html
  • Ministerio de Transportes Movilidad y Agenda Urbana. (2020). Eresee 2020. Actualización 2020 de la Estrategia a Largo Plazo Para la Rehabilitación Energética en el Sector de la Edificación en España.
  • Montalbán Pozas, B., & Neila González, F. J. (2018). Housing building typology definition in a historical area based on a case study: The Valley, Spain. Cities, 72, 1–7. https://doi.org/10.1016/j.cities.2017.07.020
  • Mujan, I., Anđelković, A. S., Munćan, V., Kljajić, M., & Ružić, D. (2019). Influence of indoor environmental quality on human health and productivity – A review. Journal of Cleaner Production, 217, 646–657. https://doi.org/10.1016/j.jclepro.2019.01.307
  • Nimlyat, P. S. (2018). Indoor environmental quality performance and occupants’ satisfaction [IEQPOS] as assessment criteria for green healthcare building rating. Building and Environment, 144, 598–610. https://doi.org/10.1016/j.buildenv.2018.09.003
  • Nimlyat, P. S., Isa, A. A., & Gofwen, N. C. (2017). Performance indicators of indoor environmental quality (IEQ) assessment in hospital buildings : A confirmatory factor analysis (CfA) approach. ATBU Journal of Environmental Technology, 1(June 2017), 139–159. https://www.ajol.info/index.php/atbu/article/view/160322
  • Nimlyat, P. S., Salihu, B., & Wang, G. P. (2022). The impact of indoor environmental quality (IEQ) on patients' health and comfort in Nigeria. International Journal of Building Pathology and Adaptation, 1–21. https://doi.org/10.1108/IJBPA-06-2021-0089
  • Ortiz, M. A., & Bluyssen, P. M. (2022). Profiling office workers based on their self-reported preferences of indoor environmental quality and psychosocial comfort at their workplace during COVID-19. Building and Environment, 211, 108742. https://doi.org/10.1016/j.buildenv.2021.108742
  • Ortiz, M., Itard, L., & Bluyssen, P. M. (2020). Indoor environmental quality related risk factors with energy-efficient retrofitting of housing: A literature review. Energy and Buildings, 221, 1–21. https://doi.org/10.1016/j.enbuild.2020.110102
  • Papadopoulos, G., Tolis, E. I., & Panaras, G. (2022). IEQ assessment in free-running university classrooms. https://doi.org/10.1080/23744731.2022.2052519
  • Parkinson, T., Parkinson, A., & de Dear, R. (2019). Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Building and Environment, 149, 241–252. https://doi.org/10.1016/j.buildenv.2018.12.016
  • Pedersen, E., Borell, J., Li, Y., & Stålne, K. (2021). Good indoor environmental quality (IEQ) and high energy efficiency in multifamily dwellings: How do tenants view the conditions needed to achieve both? Building and Environment, 191, 107581. https://doi.org/10.1016/j.buildenv.2020.107581
  • Pittini, A. (2019). The state of housing in the EU 2019. https://www.housingeurope.eu/resource-1323/the-state-of-housing-in-the-eu-2019
  • Pluschke, P., & Schleibinger, H. (Eds.). (2018). Indoor air pollution (Vol. 64). Springer. https://doi.org/10.1007/978-3-662-56065-5
  • Rangaswamy, D. R., & Ramamurthy, K. (2021). Evaluation of eight thermal comfort indices based on perception survey for a hot–humid climate through a naturally ventilated apartment. Journal of Architectural Engineering, 27(4), 04021041. https://doi.org/10.1061/(asce)ae.1943-5568.0000508
  • Rasheed, E. O., Khoshbakht, M., & Baird, G. (2021). Time spent in the office and workers’ productivity, comfort and health: A perception study. Building and Environment, 195, 107747. https://doi.org/10.1016/J.BUILDENV.2021.107747
  • Salvati, A., Coch, H., & Morganti, M. (2017). Effects of urban compactness on the building energy performance in Mediterranean climate. Energy Procedia, 122, 499–504. https://doi.org/10.1016/J.EGYPRO.2017.07.303
  • Serrano-Jiménez, A., Lizana, J., Molina-Huelva, M., & Barrios-Padura, Á. (2020). Indoor environmental quality in social housing with elderly occupants in Spain: Measurement results and retrofit opportunities. Journal of Building Engineering, 30, 101264. https://doi.org/10.1016/j.jobe.2020.101264
  • Stopps, H., & Touchie, M. F. (2020). Managing thermal comfort in contemporary high-rise residential buildings: Using smart thermostats and surveys to identify energy efficiency and comfort opportunities. Building and Environment, 173, 106748. https://doi.org/10.1016/J.BUILDENV.2020.106748
  • Tang, H., Liu, X., Geng, Y., Lin, B., & Ding, Y. (2022). Assessing the perception of overall indoor environmental quality: Model validation and interpretation. Energy and Buildings, 259, 111870. https://doi.org/10.1016/J.ENBUILD.2022.111870
  • Thach, T. Q., Mahirah, D., Sauter, C., Roberts, A. C., Dunleavy, G., Nazeha, N., Rykov, Y., Zhang, Y., Christopoulos, G. I., Soh, C. K., & Car, J. (2020). Associations of perceived indoor environmental quality with stress in the workplace. Indoor Air, 30(6), 1166–1177. https://doi.org/10.1111/INA.12696
  • The American Society of Heating, R. and A.-C. E. (ASHRAE). (2017). ASHRAE Standard 55: Thermal environmental conditions for human occupancy. In ANSI/ASHRAE Standard – 55 (Vol. 7). https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy
  • Touchie, M. F., Tzekova, E. S., Siegel, J. A., Purcell, B., & Morier, J. (2016). Evaluating summertime overheating in multi-unit residential buildings using surveys and in-suite monitoring. Thermal Performance of the Exterior Envelopes of Whole Buildings XIII International Conference, 2016-Decem, 135–151. https://www.mendeley.com/catalogue/25aafae5-2f5b-3206-8ccd-253f40764ba7/
  • Vakalis, D., Touchie, M., Tzekova, E., MacLean, H. L., & Siegel, J. A. (2019). Indoor environmental quality perceptions of social housing residents. Building and Environment, 150, 135–143. https://doi.org/10.1016/j.buildenv.2018.12.062
  • Valero, E. (2019). Vivienda y Salud. In Subsanar las desigualdades en una generación. https://oseki.eus/areas/determinantes-sociales-de-la-salud/
  • Villeneuve, H., & O’Brien, W. (2020). Listen to the guests: Text-mining Airbnb reviews to explore indoor environmental quality. Building and Environment, 169, 1–14. https://doi.org/10.1016/j.buildenv.2019.106555
  • Willems, S., Saelens, D., & Heylighen, A. (2022). Discrepancies between predicted and actual indoor environmental (dis)comfort: the role of hospitalized patients' adaptation strategies. Building Research & Information, 50(7), 792–809. https://doi.org/10.1080/09613218.2022.2038060
  • Woo, J., Rajagopalan, P., Francis, M., & Garnawat, P. (2021). An indoor environmental quality assessment of office spaces at an urban Australian university. Building Research and Information, 49(8), 842–858. https://doi.org/10.1080/09613218.2021.1944037/SUPPL_FILE/RBRI_A_1944037_SM1804.PDF
  • World Health Organization. (2019). Environmental health inequalities in Europe. Second assessment report. https://www.euro.who.int/en/publications/abstracts/environmental-health-inequalities-in-europe.-assessment-report
  • World Health Organization, United States. Department of Housing and Urban Development, France. Ministère des affaires sociales et de la santé, & United States. Environmental Protection Agency. (2018). WHO housing and health guidelines.
  • Xue, P., Mak, C. M., & Ai, Z. T. (2016a). A structured approach to overall environmental satisfaction in high-rise residential buildings. Energy and Buildings, 116, 181–189. https://doi.org/10.1016/j.enbuild.2016.01.006
  • Xue, P., Mak, C. M., Cheung, H. D., & Chao, J. (2016b). Post-occupancy evaluation of sunshades and balconies’ effects on luminous comfort through a questionnaire survey. Building Services Engineering Research and Technology, 37(1), 51–65. https://doi.org/10.1177/0143624415596472
  • Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 107, 264–278. https://doi.org/10.1016/j.enbuild.2015.08.032
  • Yao, H., Cheng, X., Wei, S., Lv, Y., Li, A., & Shen, X. (2022). Sampling method for long-term monitoring of indoor environmental quality in residential buildings. Building and Environment, 215, 108965. https://doi.org/10.1016/J.BUILDENV.2022.108965
  • Zalejska-Jonsson, A. (2019). Perceived acoustic quality and effect on occupants’ satisfaction in green and conventional residential buildings. Buildings, 9(1), 24. https://doi.org/10.3390/buildings9010024
  • Zalejska-Jonsson, A., & Wilhelmsson, M. (2013). Impact of perceived indoor environment quality on overall satisfaction in Swedish dwellings. Building and Environment, 63, 134–144. https://doi.org/10.1016/j.buildenv.2013.02.005
  • Zhang, F., & de Dear, R. (2019). Impacts of demographic, contextual and interaction effects on thermal sensation – Evidence from a global database. Building and Environment, 162, 106286. https://doi.org/10.1016/j.buildenv.2019.106286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.