701
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A dynamic model for estimating the long-term need for repairs and renovations in residential buildings

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 533-550 | Received 01 Apr 2023, Accepted 09 Jan 2024, Published online: 30 Jan 2024

References

  • Aksözen, M., Hassler, U., & Kohler, N. (2017). Reconstitution of the dynamics of an urban building stock. Building Research & Information, 45(3), 239–258. https://doi.org/10.1080/09613218.2016.1152040
  • Aksözen, M., Hassler, U., Rivallain, M., & Kohler, N. (2017). Mortality analysis of an urban building stock. Building Research & Information, 45(3), 259–277. https://doi.org/10.1080/09613218.2016.1152531
  • Bee-Hua, G. (1999). An evaluation of the accuracy of the multiple regression approach in forecasting sectoral construction demand in Singapore. Construction Management and Economics, 17(2), 231–241. https://doi.org/10.1080/014461999371736
  • Bee-Hua, G. (2000). Evaluating the performance of combining neural networks and genetic algorithms to forecast construction demand: The case of the Singapore residential sector. Construction Management and Economics, 18(2), 209–217. https://doi.org/10.1080/014461900370834
  • Bergsdal, H., Brattebø, H., Bohne, R. A., & Müller, D. B. (2007). Dynamic material flow analysis for Norway’s dwelling stock. Building Research & Information, 35(5), 557–570. https://doi.org/10.1080/09613210701287588
  • Berrill, P., & Hertwich, E. G. (2021). Material flows and GHG emissions from housing stock evolution in US counties, 2020–60. Buildings and Cities, 2(1), 599–617. https://doi.org/10.5334/bc.126
  • Boverket. (2016). En metod för bedömning av bostadsbyggnadsbehovet (2016:32). https://www.boverket.se/sv/om-boverket/publicerat-av-boverket/publikationer/2016/en-metod-for-bedomning-av-bostadsbyggnadsbehovet/
  • Boverket. (2018). Behov av nya bostäder 2018-2025 (2018:24). https://www.boverket.se/sv/om-boverket/publicerat-av-boverket/publikationer/2018/behov-av-nya-bostader-2018-2025/
  • De Santiago, E. (2015). Long-term strategy for buildings’ energy renovation in the housing sector in Spain pursuant to article 4 of Directive 2012/27/UE. Conference Paper in Conference: 11th Ecocity World Summit, Abu Dhabi – UAE.
  • Deetman, S., Marinova, S., van der Voet, E., van Vuuren, D. P., Edelenbosch, O., & Heijungs, R. (2020). Modelling global material stocks and flows for residential and service sector buildings towards 2050. Journal of Cleaner Production, 245, 118658. https://doi.org/10.1016/j.jclepro.2019.118658
  • EPBD. (2010). Directive 2010/31/EU on the energy performance of buildings (EU. Official Journal of the European Union), 19.5.2010.
  • EPBD. (2018). Directive 2018/844/EU Amending Directive of the European parliament and the council on the energy performance of buildings (EU. Official Journal of the European Union), 19.6.2018.
  • European Climate Law. (2021). Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’).
  • European Commission. (2012). The roadmap for transforming the EU into a competitive, low-carbon economy by 2050.
  • Fan, R. Y. C., Ng, S. T., & Wong, J. M. W. (2010). Reliability of the Box–Jenkins model for forecasting construction demand covering times of economic austerity. Construction Management and Economics, 28(3), 241–254. https://doi.org/10.1080/01446190903369899
  • Haahtela. (2022). HAAHTELA tender price index [WWW] Retrieved February 24, 2022, from https://www.haahtela.fi/fi/haahtela-tarjoushintaindeksi/
  • Hingorani, R., Dittrich, N., Köhler, J., & Müller, D. B. (2023). Embodied greenhouse gas emissions in structural materials for the German residential building stock — Quantification and mitigation scenarios. Building and Environment, 245, 110830. https://doi.org/10.1016/j.buildenv.2023.110830
  • Hu, M., Bergsdal, H., Van der Voet, E., Huppes, G., & Müller, D. B. (2010). Dynamics of urban and rural housing stocks in China, Building Research & Information, 38(3), 301–317.
  • Hu, M., Pauliuk, S., Wang, T., Huppes, G., van der Voet, E., & Müller, D. B. (2010). Iron and steel in Chinese residential buildings: A dynamic analysis. Resources, Conservation and Recycling, 54(9), 591–600. https://doi.org/10.1016/j.resconrec.2009.10.016
  • Hu, M., van der Voet, E., & Huppes, G. (2010). Dynamic material flow analysis for strategic construction and demolition waste management in Beijing. Journal of Industrial Ecology, 14(3), 440–456. https://doi.org/10.1111/j.1530-9290.2010.00245.x
  • Huuhka, S. (2016). Vacant residential buildings as potential reserves: A geographical and statistical study. Building Research & Information, 44(8), 816–839. https://doi.org/10.1080/09613218.2016.1107316
  • Huuhka, S., & Kolkwitz, M. (2021). Stocks and flows of buildings: Analysis of existing, demolished, and constructed buildings in Tampere, Finland, 2000–2018. Journal of Industrial Ecology, 25(4), 948–960. https://doi.org/10.1111/jiec.13107
  • Huuhka, S., & Lahdensivu, J. (2016). Statistical and geographical study on demolished buildings. Building Research & Information, 44(1), 73–96. https://doi.org/10.1080/09613218.2014.980101
  • Ibañez Iralde, N. S., Pascual, J., & Salom, J. (2021). Energy retrofit of residential building clusters. A literature review of crossover recommended measures, policies instruments and allocated funds in Spain. Energy and Buildings, 252, 111409. https://doi.org/10.1016/j.enbuild.2021.111409
  • Jiang, H., & Liu, C. (2014). A panel vector error correction approach to forecasting demand in regional construction markets. Construction Management and Economics, 32(12), 1205–1221. https://doi.org/10.1080/01446193.2014.977800
  • Kolkwitz, M., Luotonen, E., & Huuhka, S. (2023). How changes in urban morphology translate into urban metabolisms of building stocks: A framework for spatiotemporal material flow analysis and a case study. Environment and Planning B: Urban Analytics and City Science, 50(6), 1559–1576. https://doi.org/10.1177/23998083221140892
  • Kurvinen, A., Saari, A., Heljo, J., & Nippala, E. (2021). Modeling building stock development. Sustainability, 13(2), 723. https://doi.org/10.3390/su13020723
  • Laakso, S., & Loikkanen, H. A. (2004). Kaupunkitalous: Johdatus kaupungistumiseen, kaupunkien maankäyttöön sekä yritysten ja kotitalouksien sijoittumiseen. Gaudeamus.
  • Landis, J. D. (2000). Raising the roof: California housing development projections and constraints, 1997–2020. https://escholarship.org/uc/item/1391n947
  • Lankinen, M. (1996). Asuntorakentamisen ennakointi (Vol. 43). Oy Edita Ab.
  • Martín-Consuegra, F., de Frutos, F., Oteiza, I., & Agustín, H. A. (2018). Use of cadastral data to assess urban scale building energy loss. Application to a deprived quarter in Madrid. Energy and Buildings, 171, 50–63. https://doi.org/10.1016/j.enbuild.2018.04.007
  • Mata, É, Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270–282. https://doi.org/10.1016/j.buildenv.2014.06.013
  • Mattinen, M., & Heljo, J. (2016). Modeling of Finnish building sector energy consumption and greenhouse gas emissions – Specification of POLIREM policy scenario model. Reports of the Finnish Environment Institute 26/2016.
  • Mattinen, M., Heljo, J., & Savolahti, M. (2016). Rakennusten energiankulutuksen perusskenaario Suomessa 2015–2050. Suomen Ympäristökeskuksen, raportteja 35/2016.
  • Ministry of Environment. (2020). Long-term renovation strategy 2020–2050, Finland. Report according to Article 2a of Directive (2010/31/EU) on the energy performance of buildings, as amended by Directive 2018/844/EU.
  • Ministry of Housing, Communities & Local Government. (2019, July 22). Housing and economic needs assessment. GOV.UK. https://www.gov.uk/guidance/housing-and-economic-development-needs-assessments
  • Ministry of Transport Mobility and Urban Agenda. (2020). ERESEE 2020 Long-term strategy for energy rehabilitation in the building sector in Spain, 2020.
  • Müller, D. B. (2006). Stock dynamics for forecasting material flows—case study for housing in the Netherlands. Ecological Economics, 59(1), 142–156. https://doi.org/10.1016/j.ecolecon.2005.09.025
  • Nägeli, C., Camarasa, C., Jakob, M., Catenazzi, G., & Ostermeyer, Y. (2018). Synthetic building stocks as a way to assess the energy demand and greenhouse gas emissions of national building stocks. Energy and Buildings, 173, 443–460. https://doi.org/10.1016/j.enbuild.2018.05.055
  • Nägeli, C., Jakob, M., Catenazzi, G., & Ostermeyer, Y. (2020). Towards agent-based building stock modeling: Bottom-up modeling of long-term stock dynamics affecting the energy and climate impact of building stocks. Energy and Buildings, 211, 109763. https://doi.org/10.1016/j.enbuild.2020.109763
  • Nägeli, C., Thuvander, L., Wallbaum, H., Cachia, R., Stortecky, S., & Hainoun, A. (2022). Methodologies for synthetic spatial building stock modelling: Data-availability-adapted approaches for the spatial analysis of building stock energy demand. Energies, 15(18), 6738. https://doi.org/10.3390/en15186738
  • Official Statistics of Finland, OSF. (2020). Renovation building [e-publication]. ISSN = 1799-2974. Helsinki: Statistics Finland. Retrieved March 9, 2022, from http://www.stat.fi/til/kora/2020/index_en.html
  • Official Statistics of Finland, OSF. (2022a). Population projection [e-publication]. ISSN = 1798-5137. Helsinki: Statistics Finland. Retrieved March 20, 2022, from http://www.stat.fi/til/vaenn/index_en.html
  • Official Statistics of Finland, OSF. (2022b). Dwellings and housing conditions [e-publication]. ISSN = 1798-6745. Helsinki: Statistics Finland. Retrieved March 20, 2022, from http://www.stat.fi/til/asas/index_en.html
  • Paavilainen, P. (2020). Tyhjillään olevien asuntojen määrä kasvanut merkittävästi 2000-luvulla – mistä tässä on kyse? Tieto & Trendit. Retrieved October 9, 2021, from https://www.stat.fi/tietotrendit/artikkelit/2020/tyhjillaan-olevien-asuntojen-maara-kasvanut-merkittavasti-2000-luvulla-mista-tassa-on-kyse/
  • Ratu KI-6033. (2018). Rakennushankkeen kustannustenhallinta. Talonrakennusteollisuus ry ja Rakennustietosäätiö. 117 s.
  • Rosen, K. T., & Smith, L. B. (1983). The price-adjustment process for rental housing and the natural vacancy rate. The American Economic Review, 73(4), 779–786.
  • Rowley, S., Leishman, C., Baker, E., Bentley, R., & Lester, L. (2017, August 2). Modelling housing need in Australia to 2025 (Australia) [text]. AHURI final report; Australian Housing and Urban Research Institute Limited. https://www.ahuri.edu.au/research/final-reports/287
  • Ruud, M. E., Barlindhaug, R., & Nørve, S. (2013). Fremtidige boligbehov (2013:25; NIBR-Rapport). Norsk Institutt for by- og Regionforskning. https://explore.openaire.eu//search/publication?articleId=nora_uio__no::f14f0fb93703ed2aca21edce00d25308
  • Saari, A. (1998). The viability of rehabilitated apartment buildings: A feasibility study method for building rehabilitation projects developed by action research. In Department of civil and environmental engineering, construction economics and management (doctoral dissertation) (p. 224). Helsinki University of Technology.
  • Sandberg, N. H., Sartori, I., & Brattebø, H. (2014). Sensitivity analysis in long-term dynamic building stock modeling—Exploring the importance of uncertainty of input parameters in Norwegian segmented dwelling stock model. Energy and Buildings, 85, 136–144. https://doi.org/10.1016/j.enbuild.2014.09.028
  • Sandberg, N., Sartori, I., Heidrich, O., Dawson, R., Dascalaki, E., Dimitriou, S., Vimmr, T., Fil-ippidou, F., Stegnar, G., Zavrl, M., & Brattebø, H. (2016). Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and Buildings, 132, 26–38. https://doi.org/10.1016/j.enbuild.2016.05.100
  • Sartori, I., Bergsdal, H., Müller, D. B., & Brattebø, H. (2008). Towards modelling of construction, renovation and demolition activities: Norway’s dwelling stock, 1900–2100. Building Research & Information, 36(5), 412–425. https://doi.org/10.1080/09613210802184312
  • Sartori, I., Sandberg, N. H., & Brattebø, H. (2016). Dynamic building stock modelling: General algorithm and exemplification for Norway. Energy and Buildings, 132, 13–25. https://doi.org/10.1016/j.enbuild.2016.05.098
  • Socialministeriet. (2006). Den almene boligsektors fremtid. Rapport fra arbejdsgruppen vedrørende fremtidsperspektiver for en mere selvbærende almen sektor.
  • Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033
  • SWD/2022/375. Commission Staff Working Document. Analysis of the national long-term renovation strategies. Brussels, 30.11.2022.
  • Tan, Y., Langston, C., Wu, M., & Ochoa, J. J. (2015). Grey forecasting of construction demand in Hong Kong over the next ten years. International Journal of Construction Management, 15(3), 219–228. https://doi.org/10.1080/15623599.2015.1066570
  • Uihlein, A., & Eder, P. (2010). Policy options towards an energy efficient residential building stock in the EU-27. Energy and Buildings, 42(6), 791–798. https://doi.org/10.1016/j.enbuild.2009.11.016
  • Vainio, T. (2020). Asuntotuotantotarve 2020-2040. VTT Technical Research Centre of Finland. https://doi.org/10.32040/2242-122X.2020.T377
  • Wheaton, W. C. (1990). Vacancy, search, and prices in a housing market matching model. Journal of Political Economy, 98(6), 1270–1292. https://doi.org/10.1086/261734
  • Yang, J., Deng, Z., Guo, S., & Chen, Y. (2023). Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings. Applied Energy, 331, 120410. https://doi.org/10.1016/j.apenergy.2022.120410
  • Yang, X., Hu, M., Tukker, A., Zhang, C., Huo, T., & Steubing, B. (2022). A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands. Applied Energy, 306, 118060. https://doi.org/10.1016/j.apenergy.2021.118060
  • Zhang, Y., Hu, S., Guo, F., Mastrucci, A., Zhang, S., Yang, Z., & Yan, D. (2022). Assessing the potential of decarbonizing China’s building construction by 2060 and synergy with industry sector. Journal of Cleaner Production, 359, 132086. https://doi.org/10.1016/j.jclepro.2022.132086