0
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Impact of windcatcher on the thermal comfort and indoor air quality in a modern house

, , &
Received 05 Feb 2024, Accepted 26 Jul 2024, Published online: 05 Aug 2024

References

  • Abdul Majid, N., Takagi, N., Hokoi, S., Ekasiwi, S., & Uno, T. (2014). Field survey of air conditioner temperature settings in a hot, dry climate (Oman). HVAC&R Research, 20, 751–759. https://doi.org/10.1080/10789669.2014.953845
  • Al-Jawadi, M. H., & Darwish, A. F. (2016). The effect of moisturizing treatment of wind catcher on internal thermal environment. Iraqi Journal of Architecture and Planning, 15(1), 10–18. https://doi.org/10.36041/iqjap.v15i1.380
  • Al-Khatri, H., & Al-Atrash, F. (2021). Occupants’ habits and natural ventilation in a hot arid climate. Advancements in Sustainable Architecture and Energy Efficiency, 23, 146–168. https://doi.org/10.4018/978-1-7998-7023-4.ch007
  • Al-Saadi, S., Ali Al-Rawas, G., Gunawardhana, L., Al-Farsi, N., & Al-Kalbani, H. (2018). Development of a climate zoning for oman.
  • AL Mamari, M. A. (2022). Impact of windcatcher on building thermal and CO2: Concentration: Numerical simulation in Muscat. Sultan Qaboos University.
  • ASHRAE, A. society of heatingrefrigerating and air-conditioning engineers. (2010). ANSI/ASHRAE standard 55-2010: thermal environmental conditions for human occupancy.
  • Attia, S., & Herde, A. D. (2009, June 22). Designing the malqaf for summer cooling in low-rise housing, an experimental study. PLEA 2009 - Architecture Energy and the Occupant's Perspective: Proceedings of the 26th International Conference on Passive and Low Energy Architecture, 22–24.
  • Auliciems, A., & Szokolay, S. V. (2007). THERMAL COMFORT, solar thermal technologies for buildings: The state of the art. The University of Queensland. https://doi.org/10.4324/9781315074467
  • Barzegar, Z., & Mohammadi, M. (2019). The impact of wind on ambient temperature and thermal comfort through wind catcher by employing PMV-A case of Salehi’s house in Shiraz, Iran. Iran University of Science & Technology, 187–193. https://doi.org/10.22068/ijaup.29.2.213
  • Benkari, N., Fazil, I., & Husain, A. (2017). Design and performance comparison of two patterns of wind-catcher for a semi-enclosed courtyard. International Journal of Mechanical Engineering and Robotics Research, 6, 396–400. https://doi.org/10.18178/ijmerr.6.5.396-400
  • Bolonkin, A. (2011). Using of high altitude wind energy. Smart Grid and Renewable Energy, 02((02|2)), 75–85. https://doi.org/10.4236/sgre.2011.22010
  • Bonneaud, F., & Musy, M. (2001, September 15). Natural ventilation of the housing in hot and humid climates: Some suggestions for the design of urban blocks. Clima 2000, Napoli. https://doi.org/10.13140/2.1.4324.2246
  • BS EN 16798. (2019). Energy performance of buildings. Ventilation for buildings - Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. Module M1-6.
  • Calautit, J. K., Aquino, A. I., Shahzad, S., Nasir, D. S. N. M., & Hughes, B. R. (2017). Thermal comfort and indoor air quality analysis of a low-energy cooling windcatcher. Energy Procedia, 105, 2865–2870. https://doi.org/10.1016/j.egypro.2017.03.634
  • Calautit, J. K., Tien, P. W., Wei, S., Calautit, K., & Hughes, B. (2020). Numerical and experimental investigation of the indoor air quality and thermal comfort performance of a low energy cooling windcatcher with heat pipes and extended surfaces. Renewable Energy, 145, 744–756. https://doi.org/10.1016/j.renene.2019.06.040
  • Cândido, C., Lamberts, R., de Dear, R., Bittencourt, L., & de Vecchi, R. (2011). Towards a Brazilian standard for naturally ventilated buildings: Guidelines for thermal and air movement acceptability. Building Research & Information, 39(2), 145–153. https://doi.org/10.1080/09613218.2011.557858
  • Chohan, A. H., Awad, J., Elkahlout, Y., & Abuarkub, M. (2024). Evaluating windcatchers in UAE heritage architecture: A pathway to zero-energy cooling solutions. Ain Shams Engineering Journal, 102936. https://doi.org/10.1016/j.asej.2024.102936
  • Damluji, S. (1998). The architecture of Oman (1st ed.). Garnet Publishing.
  • Fanger. (1970). Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press.
  • Fanger, P. O., & Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, 34(6), 533–536. https://doi.org/10.1016/S0378-7788(02)00003-8
  • Fawwaz Alrebei, O., Obeidat, L. M., Ma’bdeh, S. N., Kaouri, K., Al-Radaideh, T., & Amhamed, A. I. (2022). Window-Windcatcher for enhanced thermal comfort, natural ventilation and reduced COVID-19 transmission. Buildings, 12(6), 791. https://doi.org/10.3390/buildings12060791
  • Foruzanmehr, A., & Vellinga, M. (2011). Vernacular architecture: Questions of comfort and practicability. Building Research & Information.
  • Ghadiri, M., Ibrahim, N., & Aayani, R. (2010). The effect of wind catcher geometry on the indoor thermal behavior. Anzasca.Net, 5, 381–385.
  • Gharibi, H. A. (2014). Urban growth from patchwork to sustainability. Case study: Muscat 323.
  • Haw, L. C., Saadatian, O., Sulaiman, M. Y., Mat, S., & Sopian, K. (2012). Empirical study of a wind-induced natural ventilation tower under hot and humid climatic conditions. Energy and Buildings, 52, 28–38. https://doi.org/10.1016/j.enbuild.2012.05.016
  • Hensen, J. L. M. (1990). Literature review on thermal comfort in transient conditions. Building and Environment, 25(4), 309–316. https://doi.org/10.1016/0360-1323(90)90004-B
  • Ibrahim, U. H., Nathan, C., & Ayuba, A. (2018). Predicted percentage dissatisfied (PPD) model evaluation of evaporative cooling potentials of some selected cities in Nigeria. Nigerian Journal of Technology, 37(1), 130. https://doi.org/10.4314/njt.v37i1.17
  • Ismail, S. T., & Miran, F. D. (2020). The revival of traditional passive cooling techniques for school buildings through windcatchers. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 11, 1–25. https://doi.org/10.14456/ITJEMAST.2020.97
  • ISO 17772-1. (2017). Energy performance of buildings — Indoor environmental quality, Part 1: Indoor environmental input parameters for the design and assessment of energy performance of buildings. https://www.iso.org/standard/60498.html.
  • Ji, Z., Su, Y., & Khan, N. (2012). Performance evaluation and energy saving potential of windcatcher natural ventilation systems in China. International Journal of Architecture, Engineering and Construction, 1, 84–95. https://doi.org/10.7492/IJAEC.2012.010
  • Kay, S. (1991). Architectural heritage of the gulf. Motivate Pub.
  • Kayne, A. (2012). Computational fluid dynamics (CFD) modeling of mixed convection flows in building enclusures 5–12.
  • Krarti, M., & Dubey, K. (2017). Energy productivity evaluation of large scale building energy efficiency programs for Oman. Sustainable Cities and Society, 29, 12–22. https://doi.org/10.1016/j.scs.2016.11.009
  • Mirhosseini, H. (2016). Socio-environmental framework for integration of thermal mass windcatchers with lightweight tensile structures in contemporary hot-arid context of Tehran [ProQuest Dissertations and Theses]. The University of Arizona.
  • Modern Device, M. (2017). Calibrating the Rev. P Wind Sensor from a new regression [WWW Document]. Modern device. Retrieved January 28, 2024, from https://moderndevice.com/blogs/documentation/calibrating-the-rev-p-wind-sensor-from-a-new-regression
  • Montazeri, H., Montazeri, F., Azizian, R., & Mostafavi, S. (2010). Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling. Renewable Energy, 35, 1424–1435. https://doi.org/10.1016/j.renene.2009.12.003
  • Mujawamariya, M., Manishimwe, A., Ntirugulirwa, B., Zibera, E., Ganszky, D., Bahati, E. N., Nyirambangutse, B., Nsabimana, D., Wallin, G., & Uddling, J. (2018). Climate sensitivity of tropical trees along an elevation gradient in Rwanda. Forests, 9(10), 647. https://doi.org/10.3390/f9100647
  • Nicoletti, F., Cucumo, M. A., Ferraro, V., Kaliakatsos, D., & Gigliotti, A. (2022). A thermal model to estimate PV electrical power and temperature profile along panel thickness. Energies, 15(20), 7577. https://doi.org/10.3390/en15207577
  • Norton, A. C. F. A. J. (1975). The problems and potentials of the indigenous built environment in a developing country DEVELOPMENT WORKSHOP.
  • Nouh Ma’bdeh, S., Fawwaz Alrebei, O., Obeidat, L. M., Al-Radaideh, T., Kaouri, K., & Amhamed, A. I. (2023). Quantifying energy reduction and thermal comfort for a residential building ventilated with a window-windcatcher: A case study. Buildings, 13(1), 86. https://doi.org/10.3390/buildings13010086
  • Pirhayati, M., Ainechi, S., Torkjazi, M., & Ashrafi, E. (2013). Ancient Iran, the origin land of wind catcher in the world. Research Journal of Environmental and Earth Sciences, 5(8), 433–439. https://doi.org/10.19026/rjees.5.5671
  • Poshtiri, A. H., & Mohabbati, S. M. (2017). Performance analysis of wind catcher integrated with shower cooling system to meet thermal comfort conditions in buildings. Journal of Cleaner Production, 148, 452–466. https://doi.org/10.1016/j.jclepro.2017.01.160
  • Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35(5), 515–526. https://doi.org/10.1016/S0378-7788(02)00163-9
  • Prohasky, D., & Watkins, S. (2014, December 11). Low cost hot-element anemometry versus the TFI cobra. Australasian Fluid Mechanics Conference.
  • Revuz, J., Hargreaves, D. M., & Owen, J. S. (2012). On the domain size for the steady-state CFD modelling of a tall building. Wind and Structures, 15(4), 313–329. https://doi.org/10.12989/was.2012.15.4.313
  • Richards, P. J., & Hoxey, R. P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46-47, 145–153. https://doi.org/10.1016/0167-6105(93)90124-7
  • Sadeghi, M., Wood, G., Samali, B., & de Dear, R. (2020). Effects of urban context on the indoor thermal comfort performance of windcatchers in a residential setting. Energy and Buildings, 219, 110010. https://doi.org/10.1016/j.enbuild.2020.110010
  • Sangdeh, P. K., & Nasrollahi, N. (2021). Windcatchers and their applications in contemporary architecture. Energy and Built Environment, 3(1), 56–72. https://doi.org/10.1016/j.enbenv.2020.10.005
  • Satish, U., Mendell, M. J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., & Fisk, W. J. (2012). Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental Health Perspectives, 120(12), 1671–1677. https://doi.org/10.1289/ehp.1104789
  • Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ε eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227–238. https://doi.org/10.1016/0045-7930(94)00032-T
  • Short, C. A., Song, J., Mottet, L., Chen, S., Wu, J., & Ge, J. (2018). Challenges in the low-carbon adaptation of China’s apartment towers. Building Research & Information, 46(8), 899–930. https://doi.org/10.1080/09613218.2018.1489465
  • SIMENS. (2022). Simcenter STAR-CCM+.
  • Song, C., Duan, G., Wang, D., Liu, Y., Du, H., & Chen, G. (2021). Study on the influence of air velocity on human thermal comfort under non-uniform thermal environment. Building and Environment, 196, 107808. https://doi.org/10.1016/j.buildenv.2021.107808
  • Yang, T. (2004). CFD and field testing of a naturally ventilated full-scale building.
  • Yang, L., Liu, X., & Qian, F. (2020). Research on water thermal effect on surrounding environment in summer. Energy and Buildings, 207, 109613. https://doi.org/10.1016/j.enbuild.2019.109613

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.