280
Views
0
CrossRef citations to date
0
Altmetric
In vitro and animal studies

Vitexin and isovitexin delayed ageing and enhanced stress-resistance through the activation of the SKN-1/Nrf2 signaling pathway

, , , , , , , & show all
Pages 685-694 | Received 28 Apr 2023, Accepted 26 Jul 2023, Published online: 21 Aug 2023

References

  • An JH, Blackwell TK. 2003. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17(15):1882–1893. doi: 10.1101/gad.1107803.
  • Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biol Med. 88(Pt B):290–301. doi: 10.1016/j.freeradbiomed.2015.06.008.
  • Bustos PS, Deza-Ponzio R, Paez PL, Cabrera JL, Virgolini MB, Ortega MG. 2018. Flavonoids as protective agents against oxidative stress induced by gentamicin in systemic circulation. Potent protective activity and microbial synergism of luteolin. Food Chem Toxicol. 118:294–302. doi: 10.1016/j.fct.2018.05.030.
  • Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, Goodarzi M, Tu X, Robertson S, Lin R, et al. 2017. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun. 8(1):2223. doi: 10.1038/s41467-017-02394-3.
  • Denham H. 1956. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11(3):298–300.
  • Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. 2019. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: a review. Eur J Med Chem. 169:185–199. doi: 10.1016/j.ejmech.2019.03.009.
  • Ewald CY, Landis JN, Porter Abate J, Murphy CT, Blackwell TK. 2015. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature. 519(7541):97–101. doi: 10.1038/nature14021.
  • Gonzalez-Manzano S, Gonzalez-Paramas AM, Delgado L, Patianna S, Surco-Laos F, Duenas M, Santos-Buelga C. 2012. Oxidative status of stressed Caenorhabditis elegans treated with epicatechin. J Agric Food Chem. 60(36):8911–8916. doi: 10.1021/jf3004256.
  • Guerrero-Rubio MA, Hernández-García S, Escribano J, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Gandía-Herrero F. 2020. Betalain health-promoting effects after ingestion in Caenorhabditis elegans are mediated by DAF-16/FOXO and SKN-1/Nrf2 transcription factors. Food Chem. 330:127228. doi: 10.1016/j.foodchem.2020.127228.
  • Hao R, Li M, Li F, Sun-Waterhouse D, Li D. 2022. Protective effects of the phenolic compounds from mung bean hull against H2O2-induced skin aging through alleviating oxidative injury and autophagy in HaCaT cells and HSF cells. Sci Total Environ. 841:156669. doi: 10.1016/j.scitotenv.2022.156669.
  • Hu JJ, Wang H, Pan CW, Lin MX. 2018. Isovitexin alleviates liver injury induced by lipopolysaccharide/d-galactosamine by activating Nrf2 and inhibiting NF-κB activation. Microb Pathog. 119:86–92. doi: 10.1016/j.micpath.2018.03.053.
  • Kenyon CJ. 2010. The genetics of ageing. Nature. 464(7288):504–512. doi: 10.1038/nature08980.
  • Khole S, A Panat N, Suryawanshi P, Chatterjee S, Devasagayam TPA, Ghaskadbi S. 2016. Comprehensive assessment of antioxidant activities of apigenin isomers: vitexin and isovitexin. Free Radical Antioxid. 6(2):155–166. doi: 10.5530/fra.2016.2.5.
  • Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M. 2019. Pro-oxidant and lifespan extension effects of caffeine and related methylxanthines in Caenorhabditis elegans. Food Chem X. 1:100005. doi: 10.1016/j.fochx.2019.100005.
  • Li SS, Wu J, Chen LG, Du H, Xu YJ, Wang LJ, Zhang HJ, Zheng XC, Wang LS. 2014. Biogenesis of C-glycosyl flavones and profiling of flavonoid glycosides in lotus (Nelumbo nucifera). PLOS One. 9(10):e108860. doi: 10.1371/journal.pone.0108860.
  • Li Y, Wang Y, Li P, Zhou Q, Zheng X, Gu Q. 2023. Caenorhabditis elegans: a nature present for advanced food science. Curr Opin Food Sci. 49:100971. doi: 10.1016/j.cofs.2022.
  • Liang F, Cao W, Huang Y, Fang Y, Cheng Y, Pan S, Xu X. 2019. a novel nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element activator, protects against oxidative damage in HepG2 cells. Biofactors. 45(4):563–574. doi: 10.1002/biof.1514.
  • Lo JY, Spatola BN, Curran SP. 2017. WDR23 regulates NRF2 independently of KEAP1. PLoS Genet. 13(4):e1006762. doi: 10.1371/journal.pgen.1006762.
  • Lu MC, Ji JA, Jiang ZY, You QD. 2016. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev. 36(5):924–963. doi: 10.1002/med.21396.
  • Lu SC. 2009. Regulation of glutathione synthesis. Mol Aspects Med. 30(1–2):42–59. doi: 10.1016/j.mam.2008.05.005.
  • Lu Y, Yu T, Liu J, Gu L. 2018. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLOS One. 13(4):e0196405. doi: 10.1371/journal.pone.0196405.
  • Lv H, Yu Z, Zheng Y, Wang L, Qin X, Cheng G, Ci X. 2016. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-kappaB and activating HO-1/Nrf2 pathways. Int J Biol Sci. 12(1):72–86. doi: 10.7150/ijbs.13188.
  • Mudge EM, Liu Y, Lund JA, Brown PN. 2016. Single-laboratory validation for the determination of flavonoids in hawthorn leaves and finished products by LC-UV. Planta Med. 82(17):1487–1492. doi: 10.1055/s-0042-118463.
  • Niu Y, Zhang J, Dong M. 2021. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med. 99(7):917–931. doi: 10.1007/s00109-021-02071-5.
  • Przybysz AJ, Choe KP, Roberts LJ, Strange K. 2009. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev. 130(6):357–369. doi: 10.1016/j.mad.2009.02.004.
  • Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D. 2013. Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging Cell. 12(4):554–562. doi: 10.1111/acel.12078.
  • Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. 2019. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med. 134:702–707. doi: 10.1016/j.freeradbiomed.2019.01.016.
  • Siswanto FM, Sakuma R, Oguro A, Imaoka S. 2022. Chlorogenic acid activates Nrf2/SKN-1 and prolongs the lifespan of Caenorhabditis elegans via the Akt-FOXO3/DAF16a-DDB1 pathway and activation of DAF16f. J Gerontol A Biol Sci Med Sci. 77(8):1503–1516. doi: 10.1093/gerona/glac062.
  • Solis GM, Petrascheck M. 2011. Measuring Caenorhabditis elegans life span in 96 well microtiter plates. J Vis Exp. 49:2496. doi: 10.3791/2496.
  • Sykiotis GP, Bohmann D. 2008. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 14(1):76–85. doi: 10.1016/j.devcel.2007.12.002.
  • Tao M, Li R, Xu T, Zhang Z, Wu T, Pan S, Xu X. 2021. Flavonoids from the mung bean coat promote longevity and fitness in Caenorhabditis elegans. Food Funct. 12(17):8196–8207. doi: 10.1039/d1fo01322j.
  • Tao M, Li R, Zhang Z, Wu T, Xu T, Zogona D, Huang Y, Pan S, Xu X. 2022. Vitexin and isovitexin act through inhibition of insulin receptor to promote longevity and fitness in Caenorhabditis elegans. Mol Nutr Food Res. 66(17):e2100845. doi: 10.1002/mnfr.202100845.
  • Tiozon RJN, Sartagoda KJD, Serrano LMN, Fernie AR, Sreenivasulu N. 2022. Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends Food Sci Technol. 127:14–25. doi: 10.1016/j.tifs.2022.06.011.
  • Tong KI, Kobayashi A, Katsuoka F, Yamamoto M. 2006. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem. 387(10–11):1311–1320. doi: 10.1515/BC.2006.164.
  • Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 132(6):1025–1038. doi: 10.1016/j.cell.2008.01.030.
  • Tullet JMA, Green JW, Au C, Benedetto A, Thompson MA, Clark E, Gilliat AF, Young A, Schmeisser K, Gems D. 2017. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell. 16(5):1191–1194. doi: 10.1111/acel.12627.
  • Vashi R, Patel BM. 2021. NRF2 in cardiovascular diseases: a ray of hope!. J Cardiovasc Transl Res. 14(3):573–586. doi: 10.1007/s12265-020-10083-8.
  • Wan QL, Fu X, Meng X, Luo Z, Dai W, Yang J, Wang C, Wang H, Zhou Q. 2020. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food Funct. 11(1):347–357. doi: 10.1039/c9fo02000d.
  • Xiong LG, Chen YJ, Tong JW, Gong YS, Huang JA, Liu ZH, Huang, ZH, Liu. 2018. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol. 14:305–315. doi: 10.1016/j.redox.2017.09.019.
  • Yang M, Jiang ZH, Li CG, Zhu YJ, Li Z, Tang YZ, Ni CL. 2018. Apigenin prevents metabolic syndrome in high-fructose diet-fed mice by Keap1-Nrf2 pathway. Biomed Pharmacother. 105:1283–1290. doi: 10.1016/j.biopha.2018.06.108.
  • Ye S, Pan F, Yao L, Fang H, Cheng Y, Zhang Z, Chen Y, Zhang A. 2022. Isolation, characterization of bamboo leaf flavonoids by size exclusion chromatography and their antioxidant properties. Chem Biodivers. 19(9):e202200506. doi: 10.1002/cbdv.202200506.
  • Zhao Z, Dong R, Cui K, You Q, Jiang Z. 2023. An updated patent review of Nrf2 activators (2020-present). Expert Opin Ther Pat. 33(1):29–49. doi: 10.1080/13543776.2023.2178299.
  • Zhou Q, Zhang N, Hu T, Xu H, Duan X, Liu B, Chen F, Wang M. 2022. Dietary phenolic-type Nrf2-activators: implications in the control of toxin-induced hepatic disorders. Food Funct. 13(10):5480–5497. doi: 10.1039/d1fo04237h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.