156
Views
0
CrossRef citations to date
0
Altmetric
Comprehensive reviews

Alterations in the sequence and bioactivity of food-derived oligopeptides during simulated gastrointestinal digestion and absorption: a review

, , , , &
Pages 134-147 | Received 17 Oct 2023, Accepted 11 Dec 2023, Published online: 07 Jan 2024

References

  • Ahmed T, Sun XH, Udenigwe CC. 2022. Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: a systematic review. Trends Food Sci. Technol. 120:265–273. doi: 10.1016/j.tifs.2022.01.008.
  • Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carrière F, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc. 14(4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Chalamaiah M, Kumar BD, Hemalatha R, Jyothirmayi T. 2012. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135(4):3020–3038. doi: 10.1016/j.foodchem.2012.06.100.
  • Chen XW, Liu WL, Li H, Zhang J, Hu CL, Liu XQ. 2023. The adverse effect of heat stress and potential nutritional interventions. Food Funct. 13(18):9195–9207. doi: 10.1039/d2fo01813f.
  • Chen XW, Liu WL, Zhang J, Li H, Liu XQ. 2023. Selenium-enriched peptides identified from selenium-enriched soybean protein hydrolysate: protective effects against heat damage in Caco-2 cells. Food Funct. 14(17):7882–7896. doi: 10.1039/d3fo01103h.
  • Chen MW, Zhang F, Su YJ, Chang CH, Li JH, Gu LP, Yang YJ. 2022. Immunomodulatory effects of egg white peptides on immunosuppressed mice and sequence identification of immunomodulatory peptides. Food Biosci. 49:101873. doi: 10.1016/j.fbio.2022.101873.
  • Cui P, Yang X, Li Y, Liang Q, Wang Y, Lu F, Owusu J, Huang S, Ren X, Ma H. 2020. The milk macromolecular peptide: preparation and evaluation of antihypertensive activity in rats. Food Funct. 11(5):4403–4415. doi: 10.1039/d0fo00151a.
  • Dalziel JE, Anderson RC, Bassett SA, Lloyd-West CM, Haggart N, Roy NC. 2016. Influence of bovine whey protein concentrate and hydrolysate preparation methods on motility in the isolated rat distal colon. Nutrients. 8(12):809. doi: 10.3390/nu8120809.
  • Ding X, Hu X, Chen Y, Xie J, Ying M, Wang Y, Yu Q. 2021. Differentiated Caco-2 cell models in food-intestine interaction study: current applications and future trends. Trends Food Sci. Technol. 107:455–465. doi: 10.1016/j.tifs.2020.11.015.
  • Ding L, Wang L, Zhang T, Yu Z, Liu J. 2018. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers. Food Res Int. 106:475–480. doi: 10.1016/j.foodres.2017.12.080.
  • Dunn BM. 2001. Overview of pepsin-like aspartic peptidases. Curr Protoc Protein Sci. Chapter 21(1):Unit 21.3. doi: 10.1002/0471140864.ps2103s25.
  • Duraffourd C, De Vadder F, Goncalves D, Delaere F, Penhoat A, Brusset B, Rajas F, Chassard D, Duchampt A, Stefanutti A, et al. 2012. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell. 150(2):377–388. doi: 10.1016/j.cell.2012.05.039.
  • Fan HB, Wu KY, Wu JP. 2022. Pea-derived tripeptide LRW fails to reduce blood pressure in spontaneously hypertensive rats due to its low gastrointestinal stability and transepithelial permeability. Food Biosci. 49:101964. doi: 10.1016/j.fbio.2022.101964.
  • FitzGerald RJ, Murray BA, Walsh DJ. 2004. Hypotensive peptides from milk proteins. J Nutr. 134(4):980S–988S. doi: 10.1093/jn/134.4.980S.
  • Foltz M, van Buren L, Klaffke W, Duchateau G. 2009. Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity. J Food Sci. 74(7):H243–H251. doi: 10.1111/j.1750-3841.2009.01301.x.
  • Guo Y, Gan J, Zhu Q, Zeng X, Sun Y, Wu Z, Pan D, Pan D. 2018. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence. J Sci Food Agric. 98(3):976–983. doi: 10.1002/jsfa.8545.
  • Hamuro Y, Coales SJ, Molnar KS, Tuske SJ, Morrow JA. 2008. Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom. 22(7):1041–1046. doi: 10.1002/rcm.3467.
  • Jiang H, Chen W, Wang J, Zhang R. 2022. Selective N-terminal modification of peptides and proteins: recent progresses and applications. Chin Chem Lett. 33(1):80–88. doi: 10.1016/j.cclet.2021.06.011.
  • Jin RT, Teng X, Liao M, Zhang L, Wei Z, Meng R, Liu N. 2021. Release of dipeptidyl peptidase IV inhibitory peptides from salmon (Salmo salar) skin collagen based on digestion-intestinal absorption in vitro. Int J Food Sci Technol. 56(7):3507–3518.
  • Kondrashina A, Arranz E, Cilla A, Faria MA, Santos-Hernández M, Miralles B, Hashemi N, Rasmussen MK, Young JF, Barberá R, et al. 2023. Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2023.2214628.
  • Kovacs-Nolan J, Zhang H, Ibuki M, Nakamori T, Yoshiura K, Turner PV, Matsui T, Mine Y. 2012. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim Biophys Acta. 1820(11):1753–1763. doi: 10.1016/j.bbagen.2012.07.007.
  • Lacroix IME, Chen X-M, Kitts DD, Li-Chan ECY. 2017. Investigation into the bioavailability of milk protein-derived peptides with dipeptidylpeptidase IV inhibitory activity using Caco-2 cell monolayers. Food Funct. 8(2):701–709. doi: 10.1039/c6fo01411a.
  • Lee SY, Hur SJ. 2017. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem. 228:506–517. doi: 10.1016/j.foodchem.2017.02.039.
  • Li WH, Xi Y, Wang JR, Zhang YX, Li H, Liu XQ. 2024. Food-derived protein hydrolysates and peptides: anxiolytic and antidepressant activities, characteristics, and mechanisms. Food Science and Human Wellness. https://kns.cnki.net/kcms/detail//10.1750.TS.20230224.1325.006.html. doi: 10.26599/FSHW.2022.9250097.
  • Lin Q, Xu Q, Bai J, Wu W, Hong H, Wu J. 2017. Transport of soybean protein-derived antihypertensive peptide LSW across caco-2 monolayers. J Funct Food. 39:96–102. doi: 10.1016/j.jff.2017.10.011.
  • Lin L, Zhu Q, Zhao M, Zhao K, Tian Y, Yang Y. 2019. Purification of peptide fraction with antioxidant activity from Moringa oleifera leaf hydrolysate and protective effect of its in vitro gastrointestinal digest on oxidatively damaged erythrocytes. Int J Food Sci Tech. 54(1):84–91. doi: 10.1111/ijfs.13907.
  • Liu N, Chen X, ·Kimm M, Stechele M, Chen X, Zhang Z, Wildgruber M, Ma X. 2021. In vivo optical molecular imaging of inflammation and immunity. J Mol Med (Berl). 99(10):1385–1398. doi: 10.1007/s00109-021-02115-w.
  • Liu W, Chen X, Li H, Zhang J, An J, Liu X. 2022. Anti-inflammatory function of plant-derived bioactive peptides: a Review. Foods. 11(15):2361. doi: 10.3390/foods11152361.
  • Mazloomi SN, Mora L, Aristoy M-C, Mahoonak AS, Ghorbani M, Houshmand G, Toldrá F. 2020. Impact of simulated gastrointestinal digestion on the biological activity of an alcalase hydrolysate of orange seed (Siavaraze, Citrus sinensis) by-products. Foods. 9(9):1217. doi: 10.3390/foods9091217.
  • Michielan A, D'Incà R. 2015. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015:628157. doi: 10.1155/2015/628157.
  • Mirzaei M, Mirdamadi S, Safavi M, Soleymanzadeh N. 2020. The stability of antioxidant and ACE-inhibitory peptides as influenced by peptide sequences. LWT Food Sci Technol. 130:109710. doi: 10.1016/j.lwt.2020.109710.
  • Nguyen TTP, Bhandari B, Cichero J, Prakash S. 2015. A comprehensive review on in vitro digestion of infant formula. Food Res Int. 76(Pt 3):373–386. doi: 10.1016/j.foodres.2015.07.016.
  • Olsen JV, Ong SE, Mann M. 2004. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics. 3(6):608–614. doi: 10.1074/mcp.T400003-MCP200.
  • Qi X, Chen H, Guan K, Sun Y, Wang R, Ma Y. 2022. Identification, inhibitory mechanism and transepithelial transport of xanthine oxidase inhibitory peptides from whey protein after simulated gastrointestinal digestion and intestinal absorption. Food Res Int. 162(Pt A):111959–111959. doi: 10.1016/j.foodres.2022.111959.
  • Ren X, Liang Q, Zhang X, Hou T, Li S, Ma H. 2018. Stability and antioxidant activities of corn protein hydrolysates under simulated gastrointestinal digestion. Cereal Chem. 95(6):760–769. doi: 10.1002/cche.10092.
  • Rodriguez J, Gupta N, Smith RD, Pevzner PA. 2008. Does trypsin cut before proline? J Proteome Res. 7(1):300–305. doi: 10.1021/pr0705035.
  • Saaby L, Nielsen CU, Steffansen B, Larsen SB, Brodin B. 2013. Current status of rational design of prodrugs targeting the intestinal di/tri-peptide transporter hPEPT1 (SLC15A1). J Drug Deliv Sci Technol. 23(4):307–314. doi: 10.1016/S1773-2247(13)50047-5.
  • Saisavoey T, Sangtanoo P, Chanchao C, Reamtong O, Karnchanatat A. 2015. Identification of novel anti-inflammatory peptides from bee pollen (Apis mellifera) hydrolysate in lipopolysaccharide-stimulated RAW264.7 macrophages. J Apic Res. 60(2):280–289. doi: 10.1080/00218839.2020.1745434.
  • Sangiorgio S, Vidović N, Boschin G, Aiello G, Arcidiaco P, Arnoldi A, Morelli CF, Rabuffetti M, Recca T, Scarabattoli L, et al. 2022. Preparation, characterization and in vitro stability of a novel ACE-inhibitory peptide from soybean protein. Foods. 11(17):2667. doi: 10.3390/foods11172667.
  • Sangsawad P, Choowongkomon K, Kitts DD, Chen X-M, Li-Chan E, Yongsawatdigul J. 2018. Transepithelial transport and structural changes of chicken angiotensin I converting enzyme (ACE) inhibitory peptides through Caco-2 cell monolayers. J Funct Food. 45:401–408. doi: 10.1016/j.jff.2018.04.020.
  • Shen WL, Matsui T. 2017. Current knowledge of intestinal absorption of bioactive peptides. Food Funct. 8(12):4306–4314. doi: 10.1039/c7fo01185g.
  • Song WK, Chen QR, Wang Y, Han Y, Zhang HW, Li B, Yu GL. 2019. Identification and structure-activity relationship of intestinal epithelial barrier function protective collagen peptides from Alaska Pollock Skin. Mar Drugs. 17(8):450. doi: 10.3390/md17080450.
  • Sowmya K, Bhat MI, Bajaj R, Kapila S, Kapila R. 2019. Antioxidative and anti-inflammatory potential with trans-epithelial transport of a buffalo casein-derived hexapeptide (YFYPQL). Food Biosci. 28:151–163. doi: 10.1016/j.fbio.2019.02.003.
  • Sun XH, Wang K, Gao S, Hong H, Zhang LG, Liu HG, Feng LG, Luo YK. 2020. Purification and characterization of antioxidant peptides from yak (Bos grunniens) bone hydrolysates and evaluation of cellular antioxidant activity. J Food Sci Technol. 58(8):3106–3119. doi: 10.1007/s13197-020-04814-7.
  • Sun L, Wu B, Yan M, Hou H, Zhuang Y. 2019. Antihypertensive effect in Vivo of QAGLSPVR and its transepithelial transport through the Caco-2 cell monolayer. Mar Drugs. 17(5):288. doi: 10.3390/md17050288.
  • Sun T, Zhang S, Yang W, Zhao Z, Yang D. 2019. Housefly pupae-derived antioxidant peptides exerting neuroprotective effects on hydrogen peroxide-induced oxidative damage in PC12 cells. Molecules. 24(24):4486. doi: 10.3390/molecules24244486.
  • Tanaka S, Nemoto Y, Takei Y, Morikawa R, Oshima S, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Stutte S, et al. 2020. High-fat diet-derived free fatty acids impair the intestinal immune system and increase sensitivity to intestinal epithelial damage. Biochem Biophys Res Commun. 522(4):971–977. doi: 10.1016/j.bbrc.2019.11.158.
  • Tonolo F, Sandre M, Ferro S, Folda A, Scalcon V, Scutari G, Feller E, Marin O, Bindoli A, Rigobello MP. 2018. Milk-derived bioactive peptides protect against oxidative stress in a Caco-2 cell model. Food Funct. 9(2):1245–1253. doi: 10.1039/c7fo01646h.
  • Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpé S. 1995. Proline motifs in peptides and their biological processing. FASEB J. 9(9):736–744. doi: 10.1096/fasebj.9.9.7601338.
  • Vu Thi H, Shen W, Tanaka M, Siltari A, Korpela R, Matsui T. 2017. Effect of aging on the absorption of small peptides in spontaneously hypertensive rats. J Agric Food Chem. 65(29):5935–5943. doi: 10.1021/acs.jafc.7b01727.
  • Wang K, Han LH, Hong H, Pan J, Liu HG, Luo YK. 2021. Purification and identification of novel antioxidant peptides from silver carp muscle hydrolysate after simulated gastrointestinal digestion and transepithelial transport. Food Chem. 342:128275. doi: 10.1016/j.foodchem.2020.128275.
  • Wang B, Li B. 2017. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chem. 218:1–8. doi: 10.1016/j.foodchem.2016.08.106.
  • Wang B, Xie N, Li B. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: a review. J Food Biochem. 43(1):e12571. doi: 10.1111/jfbc.12571.
  • Whitcomb DC, Lowe ME. 2007. Human pancreatic digestive enzymes. Dig Dis Sci. 52(1):1–17. doi: 10.1007/s10620-006-9589-z.
  • Xiao C, Zhou F, Zheng L, Cai YJ, Su GW, Luo DH, Zhao MM. 2020. Chicken breast-derived alcohol dehydrogenase-activating peptides in response to physicochemical changes and digestion simulation: the vital role of hydrophobicity. Food Res Int. 136:109592. doi: 10.1016/j.foodres.2020.109592.
  • Xing L, Liu R, Tang C, Pereira J, Zhou G, Zhang W. 2018. The antioxidant activity and transcellular pathway of Asp-Leu-Glu-Glu in a Caco-2 cell monolayer. Int J of Food Sci Tech. 53(10):2405–2414. doi: 10.1111/ijfs.13771.
  • Xiong Y, Peng P, Chen S, Chang M, Wang Q, Yin SN, Ren DF. 2022. Preparation, identification, and molecular docking of novel elastase inhibitory peptide from walnut (Juglans regia L.) meal. Food Chem (Oxf). 5:100139. doi: 10.1016/j.fochms.2022.100139.
  • Xu Q, Fan H, Yu W, Hong H, Wu J. 2017. Transport study of egg-derived antihypertensive peptides (LKP and IQW) Using Caco-2 and HT29 coculture monolayers. J Agric Food Chem. 65(34):7406–7414. doi: 10.1021/acs.jafc.7b02176.
  • Xu Q, Hong H, Wu J, Yan X. 2019. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: a review. Trends Food Sci Technol. 86:399–411. doi: 10.1016/j.tifs.2019.02.050.
  • Xu F, Mejia E, Chen H, Rebecca K, Pan MM, He R, Yao YJ, Wang LF, Ju X. 2020. Assessment of the DPP-IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco-2 cell monolayers and molecular docking analysis. J Food Biochem. 44(10):e13406-e13406. doi: 10.1111/jfbc.13406.
  • Xu Q, Yan X, Zhang Y, Wu J. 2019. Current understanding of transport and bioavailability of bioactive peptides derived from dairy proteins: a review. Int J Food Sci Tech. 54(6):1930–1941. doi: 10.1111/ijfs.14055.
  • Yang Y, Wang B, Li B. 2019. Structural requirement of casein peptides for transcytosis through the Caco-2 cell monolayer: hydrophobicity and charge property affect the transport pathway and efficiency. J Agric Food Chem. 67(42):11778–11787. doi: 10.1021/acs.jafc.9b04831.
  • Yu S, Wang W, Bu T, Zhao R, Niu R, Liu L, Li J, Wu J, Liu D. 2023. Digestion, absorption, and transport properties of soy-fermented douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestion and Caco-2 cell monolayers. Food Res Int. 164:112340. doi: 10.1016/j.foodres.2022.112340.
  • Zhang H, Duan Y, Feng Y, Wang J. 2019. Transepithelial transport characteristics of the cholesterol- lowing soybean peptide, WGAPSL, in caco-2 cell monolayers. Molecules. 24(15):2843–2843. doi: 10.3390/molecules24152843.
  • Zhang J, Fu XH, Li WH, Li H, Ying Z, Liu X, Yin L. 2020. Enhancement of nutritional soy protein and peptide supplementation on skin repair in rats. J Funct Food. 75:104231. doi: 10.1016/j.jff.2020.104231.
  • Zhang J, Wang XX, Li H, Chen CS, Liu XQ. 2022. Immunomodulatory effects of chicken broth and histidine dipeptides on the cyclophosphamide-induced immunosuppression mouse model. Nutrients. 14(21):4491. doi: 10.3390/nu14214491.
  • Zhao Y, Zhao Q, Lu QY. 2020. Purification, structural analysis, and stability of antioxidant peptides from purple wheat bran. BMC Chem. 14(1):58. doi: 10.1186/s13065-020-00708-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.