40
Views
0
CrossRef citations to date
0
Altmetric
Review

The effectiveness of early interventions for post-stroke spasticity: a systematic review

, ORCID Icon & ORCID Icon
Received 04 Mar 2024, Accepted 31 May 2024, Published online: 22 Jun 2024

References

  • Zeng H, Chen J, Guo Y, et al. Prevalence and risk factors for spasticity after stroke: a systematic review and meta-analysis. Front Neurol. 2021;11:616097. doi: 10.3389/fneur.2020.616097.
  • Kuo CL, Hu GC. Post-stroke spasticity: a review of epidemiology, pathophysiology, and treatments. Int J Gerontol. 2018;12(4):280–284. doi: 10.1016/j.ijge.2018.05.005.
  • Lundström E, Smits A, Borg J, et al. Four-fold increase in direct costs of stroke survivors with spasticity compared with stroke survivors without spasticity: the first year after the event. Stroke. 2010;41(2):319–324. doi: 10.1161/STROKEAHA.109.558619.
  • Welmer AK, von Arbin M, Widén Holmqvist L, et al. Spasticity and its association with functioning and health-related quality of life 18 months after stroke. Cerebrovasc Dis. 2006;21(4):247–253. doi: 10.1159/000091222.
  • Sunnerhagen KS, Opheim A, Alt Murphy M. Onset, time course and prediction of spasticity after stroke or traumatic brain injury. Ann Phys Rehabil Med. 2019;62(6):431–434. doi: 10.1016/j.rehab.2018.04.004.
  • Wissel J, Schelosky LD, Scott J, et al. Early development of spasticity following stroke: a prospective, observational trial. J Neurol. 2010;257(7):1067–1072. doi: 10.1007/s00415-010-5463-1.
  • Glaess-Leistner S, Ri SJ, Audebert HJ, et al. Early clinical predictors of post stroke spasticity. Top Stroke Rehabil. 2021;28(7):508–518. doi: 10.1080/10749357.2020.1843845.
  • Andringa A, Meskers C, van de Port I, et al. Time course of wrist hyper-resistance in relation to upper limb motor recovery early post stroke. Neurorehabil Neural Repair. 2020;34(8):690–701. doi: 10.1177/1545968320932135.
  • Rosales RL, Efendy F, Teleg ES, et al. Botulinum toxin as early intervention for spasticity after stroke or non-progressive brain lesion: a meta-analysis. J Neurol Sci. 2016;371:6–14. doi: 10.1016/j.jns.2016.10.005.
  • Moher D, Liberati A, Tetzlaff J, PRISMA Group., et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269, W64. doi: 10.7326/0003-4819-151-4-200908180-00135.
  • Bernhardt J, Hayward KS, Kwakkel G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int J Stroke. 2017;12(5):444–450. doi: 10.1177/1747493017711816.
  • De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–133. doi: 10.1016/S0004-9514(09)70043-1.
  • Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. Published online October 12,. 2016;355:i4919. doi: 10.1136/bmj.i4919.
  • Lindsay C, Ispoglou S, Helliwell B, et al. Can the early use of botulinum toxin in post stroke spasticity reduce contracture development? A randomised controlled trial. Clin Rehabil. 2021;35(3):399–409. doi: 10.1177/0269215520963855.
  • Cousins E, Ward A, Roffe C, et al. Does low-dose botulinum toxin help the recovery of arm function when given early after stroke? A phase II randomized controlled pilot study to estimate effect size. Clin Rehabil. 2010;24(6):501–513. doi: 10.1177/0269215509358945.
  • Tao W, Yan D, Li JH, et al. Gait improvement by low-dose botulinum toxin A injection treatment of the lower limbs in subacute stroke patients. J Phys Ther Sci. 2015;27(3):759–762. doi: 10.1589/jpts.27.759.
  • Hesse S, Mach H, Fröhlich S, et al. An early botulinum toxin A treatment in subacute stroke patients may prevent a disabling finger flexor stiffness six months later: a randomized controlled trial. Clin Rehabil. 2012;26(3):237–245. doi: 10.1177/0269215511421355.
  • Rosales R, Balcaitiene J, Berard H, et al. Early AbobotulinumtoxinA (Dysport®) in post-stroke adult upper limb spasticity: ONTIME Pilot Study. Toxins (Basel). 2018;10(7):253. doi: 10.3390/toxins10070253.
  • Rosales RL, Kong KH, Goh KJ, et al. Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2012;26(7):812–821. doi: 10.1177/1545968311430824.
  • Alvisi E, Serrao M, Conte C, et al. Botulinum toxin A modifies nociceptive withdrawal reflex in subacute stroke patients. Brain Behav. 2018;8(9):e01069. doi: 10.1002/brb3.1069.
  • Fietzek UM, Kossmehl P, Schelosky L, et al. Early botulinum toxin treatment for spastic pes equinovarus: a randomized double-blind placebo-controlled study. Eur J Neurol. 2014;21(8):1089–1095. doi: 10.1111/ene.12381.
  • Wissel J, Fheodoroff K, Hoonhorst M, et al. Effectiveness of abobotulinumtoxina in post-stroke upper limb spasticity in relation to timing of treatment. Front Neurol. 2020;11:104. doi: 10.3389/fneur.2020.00104.
  • Picelli A, Santamato A, Cosma M, et al. Early botulinum toxin type A injection for post-stroke spasticity: a longitudinal cohort study. Toxins (Basel). 2021;13(6):374. doi: 10.3390/toxins13060374.
  • Yan T, Hui-Chan CWY, Li LSW. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke. 2005;36(1):80–85. doi: 10.1161/01.STR.0000149623.24906.63.
  • Yan T, Hui-Chan C. Transcutaneous electrical stimulation on acupuncture points improves muscle function in subjects after acute stroke: a randomized controlled trial. J Rehabil Med. 2009;41(5):312–316. doi: 10.2340/16501977-0325.
  • Malhotra S, Rosewilliam S, Hermens H, et al. A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures. Clin Rehabil. 2013;27(7):579–590. doi: 10.1177/0269215512464502.
  • You G, Liang H, Yan T. Functional electrical stimulation early after stroke improves lower limb motor function and ability in activities of daily living. NeuroRehabilitation. 2014;35(3):381–389. doi: 10.3233/NRE-141129.
  • Wang YH, Meng F, Zhang Y, et al. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study. Clin Rehabil. 2016;30(6):577–586. doi: 10.1177/0269215515597048.
  • Popovic MB, Popovic DB, Sinkjaer T, et al. Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. J Rehabil Res Dev. 2003;40(5):443–453. doi: 10.1682/JRRD.2003.09.0443.
  • Werner C, von Frankenberg S, Treig T, et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 2002;33(12):2895–2901. doi: 10.1161/01.STR.0000035734.61539.F6.
  • Straudi S, Baroni A, Mele S, et al. Effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial. Arch Phys Med Rehabil. 2020;101(2):309–316. doi: 10.1016/j.apmr.2019.09.016.
  • Sale P, Franceschini M, Mazzoleni S, et al. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J NeuroEngineering Rehabil. 2014;11(1):104. doi: 10.1186/1743-0003-11-104.
  • DeMeyer L, Brown M, Adams A. Effectiveness of a night positioning programme on ankle range of motion in patients after hemiparesis: a prospective randomized controlled pilot study. J Rehabil Med. 2015;47(9):873–877. doi: 10.2340/16501977-2007.
  • Bimol N, Ningthemba Singh Y, Peya T, et al. Wrist hand orthoses in the management of upper limb spasticity in hemiplegia- a randomised controlled trial study. jemds. 2017;6(94):6877–6880. doi: 10.14260/jemds/2017/1490.
  • Lannin NA, Cusick A, McCluskey A, et al. Effects of splinting on wrist contracture after stroke: a randomized controlled trial. Stroke. 2007;38(1):111–116. doi: 10.1161/01.STR.0000251722.77088.12.
  • Andrade SM, Batista LM, Nogueira LLRF, et al. Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehabil Res Pract. 2017;2017:6842549. doi: 10.1155/2017/6842549.
  • Bornheim S, Croisier JL, Maquet P, et al. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients - a randomized, triple blind, sham-controlled study. Brain Stimul. 2020;13(2):329–336. doi: 10.1016/j.brs.2019.10.019.
  • Yagüe S, Veciana M, Pedro J, et al. Effects of bihemispheric tDCS combined with radial nerve stimulation in acute stroke patients. Brain Stimulat. 2017;10(2):390. doi: 10.1016/j.brs.2017.01.153.
  • Brunelli S, Gentileschi N, Spanò B, et al. Effect of early radial shock wave treatment on spasticity in subacute stroke patients: a pilot study. Biomed Res Int. 2022;2022:8064548–8064549. doi: 10.1155/2022/8064548.
  • Ojardias E, Ollier E, Lafaie L, et al. Time course response after single injection of botulinum toxin to treat spasticity after stroke: systematic review with pharmacodynamic model-based meta-analysis. Ann Phys Rehabil Med. 2022;65(3):101579. doi: 10.1016/j.rehab.2021.101579.
  • Wissel J, Ri S, Kivi A. Early versus late injections of Botulinumtoxin type A in post-stroke spastic movement disorder: A literature review. Toxicon. 2023;229:107150. doi: 10.1016/j.toxicon.2023.107150.
  • Wissel J, Ri S. Assessment, goal setting, and botulinum neurotoxin a therapy in the management of post-stroke spastic movement disorder: updated perspectives on best practice. Expert Rev Neurother. 2022;22(1):27–42. doi: 10.1080/14737175.2021.2021072.
  • Bavikatte G, Subramanian G, Ashford S, et al. Early identification, intervention and management of post-stroke spasticity: expert consensus recommendations. J Cent Nerv Syst Dis. 2021;13:11795735211036576. doi: 10.1177/11795735211036576.
  • Baricich A, Wein T, Cinone N, et al. BoNT-A for post-stroke spasticity: guidance on unmet clinical needs from a Delphi panel approach. Toxins (Basel). 2021;13(4):236. doi: 10.3390/toxins13040236.
  • Franck JA, Smeets RJEM, Elmanowski J, et al. Added-value of spasticity reduction to improve arm-hand skill performance in sub-acute stroke patients with a moderately to severely affected arm-hand. NeuroRehabilitation. 2021;48(3):321–336. doi: 10.3233/NRE-201622.
  • Lindsay C, Helliwell B, Harding P, et al. A prospective observational study investigating the time course of arm recovery and the development of spasticity and contractures following stroke. Physiotherapy. 2015;101:e887–e888. doi: 10.1016/j.physio.2015.03.1721.
  • Katrak PH, Cole AMD, Poulos CJ, et al. Objective assessment of spasticity, strength, and function with early exhibition of dantrolene sodium after cerebrovascular accident: a randomized double-blind study. Arch Phys Med Rehabil. 1992;73(1):4–9.
  • Schuhfried O, Crevenna R, Fialka-Moser V, et al. Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: An educational review. J Rehabil Med. 2012;44(2):99–105. doi: 10.2340/16501977-0941.
  • Opara J, Taradaj J, Walewicz K, et al. The current state of knowledge on the clinical and methodological aspects of extracorporeal shock waves therapy in the management of post-stroke spasticity—overview of 20 years of experiences. J Clin Med. 2021;10(2):261. doi: 10.3390/jcm10020261.
  • Guo P, Gao F, Zhao T, et al. Positive effects of extracorporeal shock wave therapy on spasticity in poststroke patients: a meta-analysis. J Stroke Cerebrovasc Dis. 2017;26(11):2470–2476. doi: 10.1016/j.jstrokecerebrovasdis.2017.08.019.
  • Cabanas-Valdés R, Serra-Llobet P, Rodriguez-Rubio PR, et al. The effectiveness of extracorporeal shock wave therapy for improving upper limb spasticity and functionality in stroke patients: a systematic review and meta-analysis. Clin Rehabil. 2020;34(9):1141–1156. doi: 10.1177/0269215520932196.
  • Mihai EE, Dumitru L, Mihai IV, et al. Long-term efficacy of extracorporeal shock wave therapy on lower limb post-stroke spasticity: a systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2020;10(1):86. doi: 10.3390/jcm10010086.
  • Yang E, Lew HL, Özçakar L, et al. Recent advances in the treatment of spasticity: extracorporeal shock wave therapy. J Clin Med. 2021;10(20):4723. doi: 10.3390/jcm10204723.
  • Ibuki A, Bernhardt J. What is spasticity? The discussion continues. Int J Ther Rehabil. 2007;14(9):391–395. doi: 10.12968/ijtr.2007.14.9.24579.
  • Malhotra S, Cousins E, Ward A, et al. An investigation into the agreement between clinical, biomechanical and neurophysiological measures of spasticity. Clin Rehabil. 2008;22(12):1105–1115. doi: 10.1177/0269215508095089.
  • Li S, Francisco GE, Rymer WZ. A new definition of poststroke spasticity and the interference of spasticity with motor recovery from acute to chronic stages. Neurorehabil Neural Repair. 2021;35(7):601–610. doi: 10.1177/15459683211011214.
  • Pandyan A, Gregoric M, Barnes M, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27(1–2):2–6. doi: 10.1080/09638280400014576.
  • Andringa A, Van Wegen E, Van De Port I, et al. Measurement properties of the neuroflexor device for quantifying neural and non-neural components of wrist hyper-resistance in chronic stroke. Front Neurol. 2019;10:730. doi: 10.3389/fneur.2019.00730.
  • Platz T, Eickhof C, Nuyens G, et al. Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil. 2005;27(1–2):7–18. doi: 10.1080/09638280400014634.
  • Fleuren JFM, Voerman GE, Erren-Wolters CV, et al. Stop using the ashworth scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2010;81(1):46–52. doi: 10.1136/jnnp.2009.177071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.