29
Views
0
CrossRef citations to date
0
Altmetric
Prosthetics and Orthotics

Clinician perceptions of a novel wearable robotic hand orthosis for post-stroke hemiparesis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 19 Oct 2023, Accepted 27 Jun 2024, Published online: 08 Jul 2024

References

  • Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update. Circulation. 2021;143(8):e254–e743. doi:10.1161/CIR.0000000000000950.
  • Gebruers N, Vanroy C, Truijen S, et al. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91(2):288–297. doi:10.1016/j.apmr.2009.10.025.
  • Guidetti S, Ytterberg C, Ekstam L, et al. Changes in the impact of stroke between 3 and 12 months post-stroke, assessed with the Stroke Impact Scale. J Rehabil Med. 2014;46(10):963–968. doi: 10.2340/16501977-1865.
  • Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32(6):1279–1284. doi:10.1161/01.str.32.6.1279.
  • Franck JA, Smeets RJEM, Seelen HAM. Changes in actual arm-hand use in stroke patients during and after clinical rehabilitation involving a well-defined arm-hand rehabilitation program: a prospective cohort study. PLoS One. 2019;14(4):e0214651. doi:10.1371/journal.pone.0214651.
  • Houwink A, Nijland RH, Geurts AC, et al. Functional recovery of the paretic upper limb after stroke: who regains hand capacity? Arch Phys Med Rehabil. 2013;94(5):839–844. doi:10.1016/j.apmr.2012.11.031.
  • Kwakkel G, Kollen BJ, van der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–2186. doi:10.1161/01.STR.0000087172.16305.CD.
  • Franceschini M, La Porta F, Agosti M, et al. Is health-related-quality of life of stroke patients influenced by neurological impairments at one year after stroke? Eur J Phys Rehabil Med. 2010;46(3):389–399. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20927005.
  • Khalid S, Alnajjar F, Gochoo M, et al. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review. Disabil Rehabil Assist Technol. 2021;18(5):658–672. doi:10.1080/17483107.2021.1906960.
  • Hesse S, Mehrholz J, Werner C. Robot-assisted upper and lower limb rehabilitation after stroke. Dtsch Arztebl Int. 2008;105(18):330–336. doi:10.3238/arztebl.2008.0330.
  • Johnson MJ, Rai R, Barathi S, et al. Affordable stroke therapy in high-, low- and middle-income countries: from Theradrive to Rehab CARES, a compact robot gym. J Rehabil Assist Technol Eng. 2017;4:2055668317708732. doi:10.1177/2055668317708732.
  • Lo AC, Guarino P, Krebs HI, et al. Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS. Neurorehabil Neural Repair. 2009;23(8):775–783. doi:10.1177/1545968309338195.
  • Mehrholz J, Pohl M, Platz T, et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018;9(9):CD006876. doi:10.1002/14651858.CD006876.pub5.
  • Chu CY, Patterson RM. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J Neuroeng Rehabil. 2018;15(1):9. doi:10.1186/s12984-018-0350-6.
  • Veale AJ, Xie SQ. Towards compliant and wearable robotic orthoses: a review of current and emerging actuator technologies. Med Eng Phys. 2016;38(4):317–325. doi:10.1016/j.medengphy.2016.01.010.
  • Vélez-Guerrero MA, Callejas-Cuervo M, Mazzoleni S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: a review. Sensors. 2021;21(6):2146. doi:10.3390/s21062146.
  • Yurkewich A, Kozak IJ, Hebert D, et al. Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke. J Neuroeng Rehabil. 2020;17(1):33. doi:10.1186/s12984-020-00659-5.
  • Proulx CE, Higgins J, Gagnon DH. Occupational therapists’ evaluation of the perceived usability and utility of wearable soft robotic exoskeleton gloves for hand function rehabilitation following a stroke. Disabil Rehabil Assist Technol. 2021;18(6):953–962. doi:10.1080/17483107.2021.1938710.
  • Almenara M, Cempini M, Gómez C, et al. Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design. Disabil Rehabil Assist Technol. 2017;12(1):84–96. doi:10.3109/17483107.2015.1079653.
  • McCabe JP, Henniger D, Perkins J, et al. Feasibility and clinical experience of implementing a myoelectric upper limb orthosis in the rehabilitation of chronic stroke patients: a clinical case series report. PLoS One. 2019;14(4):e0215311. doi:10.1371/journal.pone.0215311.
  • Proietti T, Nuckols K, Grupper J, et al. Combining soft robotics and telerehabilitation for improving motor function after stroke. Wearable Technol. 2024;5:e1. doi:10.1017/wtc.2023.26.
  • Martinez-Hernandez U, Metcalfe B, Assaf T, et al. Wearable assistive robotics: a perspective on current challenges and future trends. Sensors (Basel)). 2021;21(20):6751. doi:10.3390/s21206751.
  • Babič J, Laffranchi M, Tessari F, et al. Challenges and solutions for application and wider adoption of wearable robots. Wearable Technol. 2021;2:e14. doi:10.1017/wtc.2021.13.
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–S39. doi:10.1044/1092-4388(2008/018).
  • Maier M, Ballester BR, Verschure PFMJ. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci. 2019;13:74. doi:10.3389/fnsys.2019.00074.
  • Roby-Brami A, Jarrassé N, Parry R. Impairment and compensation in dexterous upper-limb function after stroke. From the direct consequences of pyramidal tract lesions to behavioral involvement of both upper-limbs in daily activities. Front Hum Neurosci. 2021;15:662006. doi:10.3389/fnhum.2021.662006.
  • Mawase F, Cherry-Allen K, Xu J, et al. Pushing the rehabilitation boundaries: hand motor impairment can be reduced in chronic stroke. Neurorehabil Neural Repair. 2020;34(8):733–745. doi:10.1177/1545968320939563.
  • Bützer T, Lambercy O, Arata J, et al. Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities. Soft Robot. 2021;8(2):128–143. doi:10.1089/soro.2019.0135.
  • Ryser F, Butzer T, Held JP, et al. Fully embedded myoelectric control for a wearable robotic hand orthosis. 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE; 2017. p. 615–621. doi:10.1109/ICORR.2017.8009316.
  • Shore L, de Eyto A, O’Sullivan L. Technology acceptance and perceptions of robotic assistive devices by older adults – implications for exoskeleton design. Disabil Rehabil Assist Technol. 2022;17(7):782–790. doi:10.1080/17483107.2020.1817988.
  • Sugawara AT, Ramos VD, Alfieri FM, et al. Abandonment of assistive products: assessing abandonment levels and factors that impact on it. Disabil Rehabil Assist Technol. 2018;13(7):716–723. doi:10.1080/17483107.2018.1425748.
  • Johnston P, Currie LM, Drynan D, et al. Getting it “right”: how collaborative relationships between people with disabilities and professionals can lead to the acquisition of needed assistive technology. Disabil Rehabil Assist Technol. 2014;9(5):421–431. doi:10.3109/17483107.2014.900574.
  • Martin JK, Martin LG, Stumbo NJ, et al. The impact of consumer involvement on satisfaction with and use of assistive technology. Disabil Rehabil Assist Technol. 2011;6(3):225–242. doi:10.3109/17483107.2010.522685.
  • Lo K, Stephenson M, Lockwood C. Adoption of robotic stroke rehabilitation into clinical settings. Int J Evid Based Healthc. 2020;18:376–390. doi:10.1097/XEB.0000000000000231.
  • Mashizume Y, Zenba Y, Takahashi K. Occupational therapists’ perceptions of robotics use for patients with chronic stroke. Am J Occup Ther. 2021;75(6):7506205080. doi:10.5014/ajot.2021.046110.
  • Flynn N, Kuys S, Froude E, et al. Introducing robotic upper limb training into routine clinical practice for stroke survivors: perceptions of occupational therapists and physiotherapists. Aust Occup Ther J. 2019;66(4):530–538. doi:10.1111/1440-1630.12594.
  • Bower KJ, Verdonck M, Hamilton A, et al. What Factors influence clinicians’ use of technology in neurorehabilitation? A multisite qualitative study. Phys Ther. 2021;101(5):1–9. doi:10.1093/ptj/pzab031.
  • Langan J, Subryan H, Nwogu I, et al. Reported use of technology in stroke rehabilitation by physical and occupational therapists. Disabil Rehabil Assist Technol. 2018;13(7):641–647. doi:10.1080/17483107.2017.1362043.
  • Turchetti G, Vitiello N, Trieste L, et al. Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption. IEEE Rev Biomed Eng. 2014;7:143–153. doi:10.1109/RBME.2014.2300234.
  • Liu L, Miguel Cruz A, Rios Rincon A, et al. What factors determine therapists’ acceptance of new technologies for rehabilitation – a study using the Unified Theory of Acceptance and Use of Technology (UTAUT). Disabil Rehabil. 2015;37(5):447–455. doi:10.3109/09638288.2014.923529.
  • Chen CC, Bode RK. Factors influencing therapists’ decision-making in the acceptance of new technology devices in stroke rehabilitation. Am J Phys Med Rehabil. 2011;90(5):415–425. doi:10.1097/PHM.0b013e318214f5d8.
  • Boser QA, Dawson MR, Schofield JS, et al. Defining the design requirements for an assistive powered hand exoskeleton: a pilot explorative interview study and case series. Prosthet Orthot Int. 2021;45(2):161–169. doi:10.1177/0309364620963943.
  • Elnady A, Mortenson WB, Menon C. Perceptions of existing wearable robotic devices for upper extremity and suggestions for their development: findings from therapists and people with stroke. JMIR Rehabil Assist Technol. 2018;5(1):e12. doi:10.2196/rehab.9535.
  • Dittli J, Meyer JT, Gantenbein J, et al. Mixed methods usability evaluation of an assistive wearable robotic hand orthosis for people with spinal cord injury. J Neuroeng Rehabil. 2023;20(1):162. doi:10.1186/s12984-023-01284-8.
  • Tanczak N, Ranzani R, Meyer JT, et al. A novel mixed-method approach to identify needs and requirements for upper limb assistive technology for persons after stroke. IEEE Int Conf Rehabil Robot. 2022;2022:1–6. doi:10.1109/ICORR55369.2022.9896516.
  • van Ommeren AL, Smulders LC, Prange-Lasonder GB, et al. Assistive technology for the upper extremities after stroke: systematic review of users’ needs. JMIR Rehabil Assist Technol. 2018;5(2):e10510. doi:10.2196/10510.
  • Park S, Fraser M, Weber LM, et al. User-driven functional movement training with a wearable hand robot after stroke. IEEE Trans Neural Syst Rehabil Eng. 2020;28(10):2265–2275. doi:10.1109/TNSRE.2020.3021691.
  • Chen A, Winterbottom L, Park S, et al. Thumb stabilization and assistance in a robotic hand orthosis for post-stroke hemiparesis. IEEE Robot Autom Lett. 2022;7(3):8276–8282. doi:10.1109/LRA.2022.3185365.
  • Babaiasl M, Mahdioun SH, Jaryani P, et al. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol. 2016;11(4):263–280. doi:10.3109/17483107.2014.1002539.
  • Hoonhorst MH, Nijland RH, van den Berg JS, et al. How do Fugl-Meyer arm motor scores relate to dexterity according to the action research arm test at 6 months poststroke? Arch Phys Med Rehabil. 2015;96(10):1845–1849. doi:10.1016/j.apmr.2015.06.009.
  • Elo S, Kyngäs H. The qualitative content analysis process. J Adv Nurs. 2008;62(1):107–115. doi:10.1111/j.1365-2648.2007.04569.x.
  • Bourassa J, Faieta J, Bouffard J, et al. Wheelchair-mounted robotic arms: a survey of occupational therapists’ practices and perspectives. Disabil Rehabil Assist Technol. 2021;18(8):1421–1430. doi:10.1080/17483107.2021.2017030.
  • Rozevink SG, Hijmans JM, Horstink KA, et al. Effectiveness of task-specific training using assistive devices and task-specific usual care on upper limb performance after stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol. 2021;18(7):1245–1258. doi:10.1080/17483107.2021.2001061.
  • Sarac M, Solazzi M, Frisoli A. Design requirements of generic hand exoskeletons and survey of hand exoskeletons for rehabilitation, assistive, or haptic use. IEEE Trans Haptics. 2019;12(4):400–413. doi:10.1109/TOH.2019.2924881.
  • Du Plessis T, Djouani K, Oosthuizen C. A review of active hand exoskeletons for rehabilitation and assistance. Robotics. 2021;10(1):40. doi:10.3390/robotics10010040.
  • Winstein C, Lewthwaite R, Blanton SR, et al. Infusing motor learning research into neurorehabilitation practice. J Neurol Phys Ther. 2014;38(3):190–200. doi:10.1097/NPT.0000000000000046.
  • Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci. 2021;22(1):38–53. doi:10.1038/s41583-020-00396-7.
  • Kwakkel G, Kollen B. Predicting improvement in the upper paretic limb after stroke: a longitudinal prospective study. Restor Neurol Neurosci. 2007;25(5-6):453–460. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18334763.
  • Sánchez N, Winstein CJ. Lost in translation: simple steps in experimental design of neurorehabilitation-based research interventions to promote motor recovery post-stroke. Front Hum Neurosci. 2021;15:644335. doi:10.3389/fnhum.2021.644335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.